A New Locally Convergent Particle Swarm Optimiser
F. van den Bergh, A. PE ngelbrecht

Department of Computer Science
University of Pretoria
Pretoria, South Africa
fvdbergh@cs.up.ac.za, engel@driesie.cs.up.ac.za

Abstract—This paper introduces a new Particle Swarm Optimi-
sation (PSO) algorithm with strong local convergence properties.
The new algorithm performs much better with 3 smaller number
of particles, compared to the original PSO. This property is desir-
able when designing a niching PSO algorithm.
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[. INTRODUCTION

The Particle Swarm Optimiser (PSO) is a population-
based optimisation method first proposed by Kennedy
and Eberhart [1]. Some of the attractive features of the
PSO include ease of implementation and the fact that
no gradient information is required. It can be used to
solve a wide array of different optimisation problems;
some example applications include neural network train-
ing [2]{3)[4][5] and function minimisation [6][7).

The original PSO algorithm does not have guaranteed
convergence properties, as shown in [8]. A new PSO-
based algorithm, called the Guaranteed Convergence
Particle Swarm Optimiser (GCPSQ), is introduced here.
This new algorithm has provably guaranteed conver-
gence onto local minima.

Section II provides a definition of the PSO algorithm,
followed by a brief discussion of related work in Sec-
tion II, The new algorithm is introduced in Section IV,
Experimental results obtained with the new algorithm is
presented in Section V, followed by a conclusion and
some ideas for future research in Section VL.

II. PSO DEFINITION

A formal definition of the PSO algorithm is presented
in this section, defining the terminology used throughout
this paper.

Each individual particle / has the following properties:
A current position in search space, x;, a current velocity,
vi, and a personal best position in search space, y;. The
personal best position, y;, corresponds to the position
in search space where particle / had the smallest error as
determined by the objective function f, assuming a min-
imisation task. The position yielding the lowest error
amongst all the y; is called the global best position, and
is denoted §. Equations (1) and (2) define how the per-
sonal and global best values are updated, respectively. It
is assumed below that the swarm consists of s particles,

thusic [1..5].
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During each iteration each particle in the swarm is up-

dated using (3) and (4). Two pseudo-random sequences,

#1 ~ U(0,1) and r; ~ UJ(0,1) are used to effect the

stochastic nature of the algorithm. For all dimensions

J € l.n,letx; ;v ; and v;; be the current position, cur-

rent personal best position and velacity of the j% dimen-

sion of the / particle. The purpose of the inertia weight

w, and the constants ¢ and ¢z, is discussed in more de-
tail below. The velocity update step is

vij(t+1} = ww (o) +eir (e (0 —xi (0] +
earg, j(O)(e) —x;,;(0)] &

The new velocity is ther added to the current position of
the particle to obtain the next position of the particle:

X1+ 1) =xi{t}+ vt +1) @)

The value of each dimension of every velocity vector
v; is clamped to the range [—Vmax, Vmax| to reduce the
likelihood of the particle leaving the search space. The
value of Vipgy is usually chosen to be & X xpaz, with 0.1 <
k < 1.0 [9], where xmqy denotes the domain of the search
space. Note that this does not restrict the values of x; to
the range [—Vimax, Vimax); it merely limits the maximum
distance that a particle will move during one iteration.

The irertia weight, w, in equation (3) is used to con-
trol the convergence behaviour of the PSO. Smatl values
of w result in more rapid convergence — usually on a
suboptimal position, while a too large value may pre-
vent convergence. Typical implementations of the PSO
adapt the value of w during the training run, e.g. linearly
decreasing it from 1 to near 0 over the run, Convergence
can be obtained with fixed values as shown in [10][8].

The acceleration coefficients, ¢ and c¢3, control how
far a particle will move in a single iteration. Typically
these are both set to a value of 2.0 [9], although it has
been shown that setting ¢; # ¢z can lead to improved
performance [11].
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III. RELATED WORK

The PSO is related to the Genetic Algorithm, another
population based optimisation technique. Angeline ex-
ploited this relationship by adding fitness-based selec-
tion to the PSO update process [12], i.e. the properties
of the better particles are shared with the worse parti-
cles through replication. Another Evolutionary Compu-
tation inspired idea was that of Lavbjerg et al. [13], whe
added crossover operators to combine two members in
the population to form two new ones. They further par-
titioned the swarm into subpopulations — unfortunately
this meant that the number of particles per subpopula-
tion dwindled as the number of subpopulations was in-
creased.

Not much research has been done to theoretically
analyse the PSO algorithm. Clerc investigated a deter-
ministic version of the algorithm [14], but did not extend
his model to the general stochastic case. A later paper
by Clerc et al. further investigated the PSO’s conver-
gence characteristics [10], however, they failed to prove
that the algorithm will converge on a minimiser. Ozcan
and Mohan [15) published explicit equations describing
the particle trajectories for the original PSO algorithm.
Their analysis did not discuss the purpose of the inertia
weight in detail.

IV. A MODIFIED PARTICLE SWARM OPTIMISER
(GCPSO)

The original PSQ algorithm introduced in [1], in-
cluding the later inertia weight and constriction factor
versions, all have a potentially dangerous property: if
x; = y; = ¥, then the velocity update will depend only
on the value of ww;;{¢t). In other words, if a parti-
cle’s current position coincides with the global best po-
sition/particle, the particle wilt only move away from
this point if its previous velocity and w are non-zero. If
their previous velocities are very close 1o zero, then all
the particles will stop moving once they catch up with
the global best particle, which may lead to premature
convergence of the algorithm. In fact, this does not even
guarantec that the algorithm has converged on a local
minimum -— it merely means that all the particles have
converged on the best position discovered so far by the
swarm. This phenomenon will be referred to as stagna-
tion, A more formal proof of this property can be found
in [8].

To address this issue a new parameter is introduced to
the PSO algorithm, Let 1 be the index of the global best
particle, so that

y:=%
In order to keep the global best particle moving until
it has reached a local minimum, a new velocity update
equation for the global best particle (i.e. particle 1) is

suggested, so that

—xr (1) +Pi{0) v () +
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where p is a scaling factor defined below. The other
particles in the swarm continue using the usual velocity
update equation (e.g. equation 3). Briefly, the —xy (¢}
term “resets” the particle’s position to the position $;. To
this position a vector representing the current search di-
rection, represented by the term wvy ;(¢}, is added. The
p(N{1 —2rz,;(¢)} tenm generates a random sample from
a sample space with side lengths 2p(¢).

Combining the position update step (equation 4} and
the new velocity update step (equation 5) for the global
best particle T results in the new position update equa-
tion

velt+1) =

Xe (0 +1) = 5,(1) + wve (1) +p(0)(1 ~ 2r2(2))  (6)

The addition of the p term causes the PSO to perform
a random search in an area sutrounding the global best
position §. The diameter of this search area is controlled
by the parameter p. The value of p(r) is adapted after
each time step, using -

2p(t)  if#successes > 5
0.5p(r)} if #faitures > f; @)
p(r) otherwise

plr+1)=

where the terms #failures and #successes denote the
number of consecutive! ailures or successes, respec-
tively, where a failure is defined as f(§{¢)) = £(§(¢ -
1)). A default initial value of p(0) = 1.0 was found em-
pirically to produce acceptable results. The values s5.
and f; are threshold parameters, discussed in more de-
tail beiow. The foltowing additional rules must also be
implemented to ensure that equation (7) is well-defined:

#successes(t+ 1) > #successes(t) = #failures(t+ 1) =0
and
#failures(t + 1) > # failures(t) = #successes(t+1) =10

Thus, on a success the failure count is set to zero, and
likewise the success count is reset when a failure occurs.

The optimal choice of values for the parameters f,
and 5. depend on the objective function. In high-
dimensional search spaces it is difficult to obtain better
values using a random search in only a few iterations, so
it is recommended to set f- = 5, 5. = 15. These settings
imply that the algorithm is quicker to punish a poor p
setting than it is to reward a successful p value; a strat-
egy found empirically (in Section V) to produce accept-
able results.

Alternatively, the optimal values for f and s.ca n be
learnt dynamically. For example, the value of s.ca nbe



increased every time that # fzilures > f, in other words,
it becomes more difficult to reach the success state if
failures occur frequently. This prevents the value of p
from oscillating rapidly. Using this scheme the parame-
ters can adapt to the local conditions of the error surface,
with the ability to learn new settings when the error sur-
face changes. A similar strategy can be designed for f,.

The value of p is adapted in an attempt to learn the op-
tima] size of the sampling volume given the current state
of the algorithm. When a specific p value repeatedly re-
sults in a success, a larger sampling volume is selected
to increase the maximum distance traveled in one step.
Conversely, if p produces £ consecutive failures, then
the sampling volume is too large and must be reduced.

When p becomes sufficiently small (compared to the
machine’s precision, for example) the algorithm can ei-
ther halt or keep p fixed at this lower bound untit some
other stopping criterion is met. Note that halting may
not be the best option, as information regarding the po-
sition of the other particles must also be taken into ac-
count, A typical example might be where some of the
particles are still exploring a distant region of the search
space, while the global best particte has already con-
verged on the local minimum closest to it. In this case
the distant particles may still be able to discover a bet-
ter minimum, so the algorithm should continue until
the maximum allowed number of iterations have been
reached.

The PSO algorithm using equation (5) to update the
position of its global best particle is called the Guaran-
teed Convergence Particle Swarm Optimiser (GCPSO).
A proof of guaranteed convergence onto local minima
for this algorithm can be found in [8]. Note that nei-
ther the GCPSQ nor the original PSO have guaranteed
convergence onto global minima.

V. RESULTS

This section compares the GCPSQO algorithm to the
original PSO algorithm, using two unimodal and two
non-unimodal functions. The following functions were
used to test the algorithms:

Spherical: A very simple, unimodal function with its
global minimum located at x* = 0, with f{x*) = 0, This
function has no interaction between its variables.

filx) = ixf ®)
i=1

Note that this function is actually a quadratic function,
The name “Spherical’ is used here since many other pa-
pers have used that name for this function, e.g. [16].

Quadric: A variation of the Spherical function, but with
significant interaction between its variables, The global

TABLE I
FUNCTION PARAMETERS

Function | n | Domain | Threshold
Acldey 30 30 5.00
Rastrigin | 30 5.12 100
Spherical | 30 100 0.01
Quadric | 30 100 0.01

minimiser is located at x* = 0, so that f(x*) = 0.

. 2
A=Y Zx,-) )
i=1 \J=1

Ackley: A multi-modal function with deep local min-
ima. The global minimiser is x* = 0, with f{x*) = 0.
Note that the variables are independent.

1 n
—20exp (—0.21 / . Zr:‘ }
i=1

—exp (l icos(me,-))
n i=]
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Rastrigin: A multi-modal version of the Spherical func-
tion, characterised by deep local minima arranged as
sinusoidal bumps. The global minimum is f(x*) = 0,
where x* = 0. The variables of this function are inde-
pendent.

falx) = i" (x} — 10cos(2mx;) + 10) (n
i=1

Table I lists the parameter settings for the functions in
the benchmark suite. Note that all functions were tested
using 30-dimensional search spaces.

All experiments consisted of 50 runs. The PSO pa-
rameters were sef to the values w =0.72, and ¢j =¢; =
1.49 — these values lead to convergent behaviour {8].

Note that the GCPSO has some additional parameters
that can be fine-tuned. The default parameters, specified
in Section IV, were used throughout, Although these
parameters may not be optimal, they have been found to
produce acceptable results on a small set of test func-
tions.

A. Fixed Number of Iterations

Table II presents the results of minimising various
functions using both the PSO and GCPSO algorithms.
The column labeled “s” lists the number of particles in
the swarm for each row. When comparing the results in
the table, keep in mind that both the Ackley and Rastri-
gin functions contain many local minima, and that both
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Fig. 2. Emor profile for the Quadric function

the GCPSO and PSO algorithms are not explicitly de-
signed to deal with this type of function without some
mechanism to help them to locate the global minimiser.
This implies that the quality of the solutions discovered
by the algorithms are highly dependent on the initial po-
sitions of the particles, which were randomly chosen.

On the Ackley function, the GCPSO performed sig-
nificantly better than the PSO when using only two parti-
cles, but there was no significant difference between the
performance of the algorithms when 20 particles were
used. The Rastrigin function preduced similar results
in the two-particle case, but the original PSO performed
significantly better on the 20-particle experiment. Keep
in mind that the results for both the Ackley and Rastrigin
functions are presented only for completeness — neither
algorithm is properly equiped to deal with multi-modal
functions (see [8] for a formal proof),

The two unimodal functions in Table II clearly show
the stronger local convergence property of the GCPSO,
The Spherical function is exceedingly simple, having no
interaction between the variables and only a single (thus
glebal) minimum, The GCPSO is able to minimise this
function to a very high degree when using only two par-

ticles; in contrast, the original PSO struggles with pre-
mature convergence if only two particles are used. This
is a clear example of the stagnation mentioned in Sec-
tion IV. Note that adding more particles allowed the
standard PSO to perform significantly better; even the
GCPSO benefitted from the increased diversity offered
by the larger number of particles.

The last unimodal function, Quadrie, illustrates the
same concept, but to a less striking degree. This function
has significant interaction between its variables, making
this problem harder to solve than the Spherical func-
tion. Note that there was a large jump in performance
between using 2 particles and 20 particles, even when
using the GCPSO, This implies that the greater diver-
sity provided by the additional particles helps the PSO
to solve the problem more quickly.

Figure 1 plots the error profile of the Rastrigin func-
tion for PSO and GCPSO algorithms for swarm sizes of
10 and 20 particles. The most significant feature of this
plot is the fact that all the algorithms become trapped in
local minima, as indicated by their unchanging function
values after the first 10000 function evaluations. Note
that the original PSO fared slightly better on this func-
tion, and that both algorithms improved somewhat when
larger swarms were used.

Figure 2 presents the error profile of the Quadric func-
tion. Note how the 10-particle PSO stagnates after about
50000 function evaluations. The 20-particle PSO, as
weli as both the GCPSOs, continue to improve during
the whole run, Note how the 10-particle GCPSO grad-
ually outperforms the 20-particle GCPSO — a property
that will be discussed in more detail in the next section,

B. Rate of Convergence

Table HI presents results obtained by running the var-
ious algorithms until they discovered an objective func-
tion value below the corresponding value listed in the
‘threshold’ column of Table I. These results give an in-
dication of the robustness as well as the rate of conver-
gence of the two algorithms on the various benchmark
functions. The *s” column of Table Il lists the numbet of
particles, the *N;* column the number of runs (out of 50)
that reached the threshold and the *F’ column lists the
average number of objective function evaluations (enly
for the runs that reached the threshold).

The results for the non-unimodal functions, Ackley
and Rastrigin, show that both the GCPSO and the PSO
performed comparably. Both algorithms struggled to
reach the threshold of the Ackley function using only 10
particies, but their performance improved as more par-
ticles were added. On Rastrigin’s function, the original
PSO seems to have fared slightly better than the GCPSO
using 20 particles.

The algorithm’s performance on the unimodal func-
tions exhibited much clearer trends. The original PSO



TABLE I

COMPARING GCPSO AND PSO ON VARIOUS FUNCTIONS, AFTER 2 X 10%F UNCTION EVALUATIONS

Function | s | GCPSO

PSO

Ackley 2 | 1.85e+01 £ 1.99e¢-01
20 { 2.70e+00 + 6.36e—01

1.93¢4-01 £ 2.03e—-01
3.40e+00 £ 4,58¢—01

20 | 2.09e~201 3 0.00e+00

Rastrigin | 2 | 1.81e4+02 £ 2.13e+01 2.93e+-02 £ 1.46e+01
20 | 7.61e401 +5.07e+00 6.52e+01 & 4.84¢4-00
Spherical | 2 | 6.54e-084 £+ 1.44e—007 | 4.03¢+004 + 2.80e+003

1.15¢—110 & 1.37e—-097

Quadric 2 | 2.87e+003 & 1.90e+003
20 | 945e—152 £ 3.87e—146

1.14e+007 £ 1.14e4+-006
3.65¢~107 + 4.20e—098

requires more function evaluations when fewer particles
are used, which appears illogical given the fact that the
ohiective function is unimodal, with no local minima to
trap particles. The only explanation for this behaviour is
that the PSO needs about 20 particles to prevent stagna-
tion — even on a unimodal function. Using a swarm size
of more than 30 particles causes the PSO to use more
function evaluations to reach the threshold.

The GCPSO algorithm exhibits exactly the opposite
behaviour, requiring fewer function evaluations when
using fewer particles. This behaviour is expected:
adding more particles incurs a greater overhead, since
each particle consumes one function evaluation per iter-
ation. This behaviour is clearly desirable when dealing
with unimodal functions, since they do not have local
minima that could trap some particles, thus necessitat-
ing the use of a large swarm.

These results show that the GCPSO is perfectly ca-
pable of locating the minimum of a unimodal func-
tion with only a small number of particles, implying
that it does not need many particles to facilitate a lo-
cal search. This property is desirable when the swarm is
partitioned into sub-swarms, like in the breeding PSO
proposed by Lovbijerg er al[13]. To summarise, the
GCPSO algorithm has significantly faster convergence
on unimodal functions, especially when smaller swarm
sizes are used. This improved performance is not visible
on multi-modal functions, because the GCPSO can stiil
become trapped in local minima, just like the original
PSO. In fact, the GCPSO may be slightly more prone
to beceming trapped because of its faster rate of conver-
gence.

V1. CONCLUSION & FUTURE WORK

This paper introduced a new PSO-based algorithm,
called the Guaranteed Convergence Particle Swarm Op-
timiser (GCPSO). This new algorithm has significantly
faster vonvergence compared to the original PSO, espe-
cially when smaller swarm sizes are used. This prop-
erty is desirable when the swarm is partitioned into
smaller sub-swarms, as done by Lebjerg et al. The im-

TABLE UI
COMPUTATIONAL COMPLEXITY

GCPSO PSO
Function s | Ne F | N, F
Ackley 10 | 12 1586 | I1 2099
£5 1351 2018 32| 3019
20 |46 | 2480 | 37 | 2986
Rastrigin | 10 | 36 1636 | 45 | 2112
15 | 45 1985 | 43 [ 2525
20145 2326 | 49| 3341
Spherical | 10 | 50 | 4366 | 48 | 22851
15| 50| 5201 [ SO | 11204
201 50| 6564 | 50 | 9775
30 [ 50| 9138 [ 50 | 10927
Quadric 10 [ s0 ] 9284 [ 38 | 34838
15| 50| 9599 | 50 | 16735
20) 50§ 11347 | 50 | 14574
30 | 50 | 14317 | S0 | 15252

proved performance of the new algorithm is especiatly
noticeable or unimodal functions; its performance on
multi-modal functions remains comparable to the origi-
nal PSO. A further benefit of the new algorithm is that
it cannot converge prematurely on unimodal functions,
since it has been proven to be a local optimisation algo-
rithm with guaranteed convergence properties.

The GCPSO oniy affects the update equation of the
global best particle, thus it can be used in conjunction
with a large number of other enhancements made to the
basic PSO algorithtn.

The GCPSO introduces several new parameters. Fu-
ture work will focus on designing better strategies to
adapt these values dynamically as part of the optimisa-
tion process.
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