IE 607 Heuristic Optimization

Genetic Algorithm

1

Origins

- John Holland, CS/EE, U. of Michigan, ideas of adaptive or reproductive plan (1962)
- Ken DeJong, John's student, now CS at George Mason U., function optimization (1975)
- David Goldberg, John's student, now at U. of Illinois at Urbana Champaign (1983 Ph.D. & 1989 book)
- Bagley (1967) game-playing program; Rosenberg (1967) simulated biological process; Cavicchio (1970) subroutine selection & pattern recognition

Key Ideas

Population evolves mainly through sexual reproduction (crossover) with mutation a secondary operator

GA Terminology

encode problem as bit string – *chromosome* (also called *strings, vectors,* or *solutions* in some occasions)

each variable - gene

each component(bit) of variable – *allele*; i.e., possible values of a variable

location of allele – *locus*; i.e., position of a variable in a string

total package of strings – *structure*

e.g. an animal's eye color *gene*, its *locus* - position 10, and its *allele* value - blue eyes.

genotype – coded string processed by the algorithm; i.e., actual structure

phenotype – decoded solution; i.e., physical expression of the structure

epistasis – non linearity (independence) of alleles; i.e., the interaction between genes such that the contribution of a gene to the fitness depends on the value of other genes in the chromosome

e.g. for echo-location, bats must be able to generate ultrasonic squeaks, *and* have a hearing system capable of detecting the echoes. Therefore, the genes for good hearing can only increase the "fitness" of a bat if it also has genes for squeak production.

fitness – objective function value

 \rightarrow Each chromosome encodes a solution to the problem, and its fitness value is related to the value of the objective function for that solution.

SCHEMA (*pl.* schemata) – specified alleles (rest of the chromosome wild cards represented by *); i.e., defines subsets of similar chromosomes, or as hyperplanes in n-dimensional space.

- \cdot schema order (o) number of non wild card alleles
- \cdot schema length (δ) distance from first to last non wild card alleles

 \cdot (k+1)^{*I*} schema for alphabets of cardinality k (i.e., number of alphabet characters) and chromosome length *I*

- <u>Example 1</u>: 0, 1, * (i.e., k = 2)
- if $l=5 \rightarrow (k+1)^{\prime} = 3^{5} = 243$ different similarity templates
- Example 2: chromosome: 0 1 0 1 0 0 0 1 schema: * 1 0 * * 0 * * order is 3 and length is 4 schema: 0 * * * * * * * * order is 1 and length is 0 schema: * 1 0 1 0 0 0 * order is 6 and length is 5

Schema Theorem

(Fundamental Theorem of GA): good schemata are sampled over evolution with exponential increases

$$E\{m(H,t+1)\} \ge E\{m(H,t)\} \cdot \frac{f(H)}{f} \left(1 - p_c \frac{d(H)}{l-1} - p_m o(H)\right)$$

where *m* is the number of schema *H*, *t* is a generation, $f = \frac{\sum f_j}{n}$ is the mean fitness of population, *f*(*H*) is the

mean fitness of strings containing H, p_c is the crossover probability, p_m is the mutation probability, I is the chromosome length, (H) is the length of H and o(H) is the order of H. m(H,t) denotes that at a given generation t, there are m examples of a particular schema Hcontained within the population. 10

Schema Theorem (cont.)

Reproduction:

$$E\{m(H,t+1)\} = E\{m(H,t)\} \cdot n \cdot \frac{f(H)}{\sum f_j} = E\{m(H,t)\} \cdot \frac{f(H)}{\sum f_j / n}$$

$$= E\{m(H,t)\} \cdot \frac{f(H)}{f}$$

crossover: $p_d = \frac{d(H)}{l-1}, p_s = 1 - p_d \Rightarrow p_s \ge 1 - p_c \frac{d(H)}{l-1}$

mutation: a single allele survives with probability of $1-p_m$, and each of the mutations is independent. The probability of surviving mutation $(1-p_m)^{o(H)}$, for $p_m <<1 \rightarrow 1-o(H)p_m$

Schema Theorem (cont.)

Schema Theorem favors highly fit (above average), short length, low order schemata, which are termed **building blocks** → receive exponentially increasing trials in subsequent generations

Implication of Schema Theorem – *implicit parallelism* as each chromosome has multiple schema

Canonical GA

encode problem as bit string set p_c, p_m, ps, g_{max} randomly generate ps solutions calculate fitness until $g = g_{max}$ { for 1 to ps / 2select 2 parents considering fitness (biased **Roulette Wheel Selection**) crossover with p_c probability to produce 2 children mutate children with p_m probability at each allele } replace parents with children } return

note: p_c is generally very large and p_m is generally very small.

Example of GA

max x² -10 x 10 pick chromosome length (*l*) = 5 and ps = 4 precision of bit encoding: $\frac{a-b}{2^l-1} = \frac{10-(-10)}{2^5-1} = 0.645$ decoding = $b + \frac{a-b}{2^l-1} \cdot \sum_{j=0}^{l-1} s_{l-j} 2^j$ where $x = (s_1, ..., s_l)$

randomly generate initial solutions:

 $\begin{array}{l} x_1 = 01110 = (.645)(2 + 4 + 8) - 10 = -0.97 \rightarrow x_1{}^2 = 0.94 \\ x_2 = 01111 = (.645)(1 + 2 + 4 + 8) - 10 = -0.325 \rightarrow x_2{}^2 = 0.11 \\ x_3 = 10011 = (.645)(1 + 2 + 16) - 10 = 2.26 \rightarrow x_3{}^2 = 5.09 \\ x_4 = 00100 = (.645)(4) - 10 = -7.42 \rightarrow x_4{}^2 = 55.06 \\ \text{sum of fitness } 61.20 \end{array}$

Example of GA (cont.)

 $p(x_1 \text{ is selected}) = 0.94 / 61.20 = 0.02$ $p(x_2 \text{ is selected}) = 0.11 / 61.20 = 0.00$ $p(x_3 \text{ is selected}) = 5.09 / 61.20 = 0.08$ $p(x_4 \text{ is selected}) = 55.06 / 61.20 = 0.90$

select x_1 and x_4 for single point crossover and randomly select locus 2 as crossover point:

0 1 1 1 0 parent 1 0 0 1 0 0 parent 2

0 1 1 0 0 child 1, fitness = 5.11 0 0 1 1 0 child 2, fitness = 37.58

Example of GA (cont.)

mutate children with $p_m = 0.10$

1 1 1 0 0 mutated child 1, fitness = 64.96

0 0 1 1 0 mutated child 2, fitness = 37.58

select 2 more parents and produce 2 more children

replace old population with the 4 new children continue until termination criteria is met return best solution of final population

Variations

a. encoding

bit string real number permutation (also called path or order) matrix parse tree

mixed

b. initial population *random*seeding

c. selection for parents

biased roulette wheel

- rank based roulette wheel
- tournament

deterministic selection – top half/truncation selection; elitist selection

d. crossover

single point 2-point or multi-point uniform biased uniform partial-mapped (PMX) order (OX) position-based order-based cycle (CX)

d. crossover (cont.)

subtour exchange heuristic arithmetic intermediate simplex geometrical fitness-based scan etc.

e. mutation

bit flip inversion insertion 2 opt (reciprocal exchange) heuristic etc.

f. population maintenance

replace parents with children keep best of pooled population elitism

g. termination

maximum generations population homogeneity non improvement of best

Advanced Variations

a. local search options
 memetic algorithm
 Lamarckian – change chromosome

b. speciation and **sharing** discourage solution similarity share fitness over same niche

c. fitness scaling static / dynamic linear sigma truncation power law logarithmic normalizing penalized

d. deception

gray codes messy coding floating-point coding edge encoding random keys

e. parallel implementations solutions in parallel populations in parallel

f. use of search feedback change p_c , p_m change ps change local search

g. multi-criteria optimization multiple populations sequential evolution Pareto optimality through ranking