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Scope and Purpose—There are a vast number of practical design and resource-allocation problems, in
many different fields, where the decision to be made is a matching (or assignment) of items in one set to
items in another, disjoint set. If the costs associated are simply constants for each possible pairing, this
is the classical “Assignment Problem”, for which good algorithms have been known for more than a
century. However, if the cost structure is more complex, so that the cost of a given assignment depends
on two-way or higher-order interactions between pairings, difficult combinatorial problems result. The
quadratic assignment problem (QAP) is perhaps the simplest in structure of these difficult problems. In
QAP, a constant cost is associated with simultaneouly making two particular assignments. Such cost
structures arise, for example, in facility location problems, where the cost of locating facility i at site j and
facility k at site ! is a function of the distance between the two sites j and /, and the degree of interaction
between the two facilities i and k. Genetic algorithms (GA) are a family of parallel, randomized-search
optimization heuristics which are based on the biological process of natural selection. They have proven
to be most effective on non-convex optimization problems for which it is relatively easy to assess the
quality of a given feasible solution, but difficult to systematically improve solutions by deterministic
iterative methods. Most NP-complete combinatorial problems fall into this category. Since QAP is the
nonlinear assignment problem with the most “special structure”, it is more likely to yield good solutions
to clever deterministic heuristics which take advantage of that structure. Conversely, if GAs can be shown
to perform competitively on QAP, this gives us good reason to believe that extending genetic algorithms
to the many more complex nonlinear assignment problems found in VLSI design, facility layout, and
location problems may yield better results than deterministic heuristics can provide for these less-structured
problems. In this paper, we present the results of an investigation of a particular GA for QAP, and discuss
the potential of GAs for more complex nonlinear assignment problems. We show that the GA performed
consistently equal to or better than previously known heuristics without undue computational overhead.
We conclude with some more general comments on the design and implementation of GAs, motivated
by our results for QAP.

Abstract—The quadratic assignment problem (QAP) is a well-known combinatorial optimization problem
with a wide variety of practical applications. Although many heuristics and semi-enumerative procedures
for QAP have been proposed, no dominant algorithm has emerged. In this paper, we describe a genetic
algorithm (GA) approach to QAP. Genetic algorithms are a class of randomized parallel search heuristics
which emulate biological natural selection on a population of feasible solutions. We present computational
results which show that this GA approach finds solutions competitive with those of the best
previously-known heuristics, and argue that genetic algorithms provide a particularly robust method for
QAP and its more complex extensions.

1. INTRODUCTION

The quadratic assignment problem (QAP) is a well-known classical combinatorial optimization
problem, which can be described as follows. We are given a set of n distinct objects 1, 2, ..., n,
which are to be placed uniquely in n or more distinct sites. Associated with each pair of objects
(i, j) is an interaction (or traffic) intensity, T(i, j). Associated with each pair of sites (S,, S;) is a unit
traffic cost (often referred to as the distance between S, and S)), D(S,, S;). We may also specify a
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fixed cost F(i, S;) associated with the placement of object i in site S;. If we let A(i) denote the site
to which object i is assigned in a particular feasible assignment A, the total cost of assignment A4
is given by

Cost(d)= Y F(, A+ 3, X [7G j) DA®, A
objectsi objectsi sitesj
The distance matrix D need not be symmetric; the fixed costs may be zero.

There are numerous examples of applications of this problem. If we define the sites to be
particular locations on a plane, our objects to be facilities which will interact, the distances to be
unit directed travel costs between locations, and the traffic intensities to be the pairwise amount
of travel required between facilities, then we get the well known facility layout problem. If we
choose our sites to be pre-specified points on a printed circuit card, our objects to be required
components, our traffic intensities to be the number of wires required between components, and
our distances to be the inter-site wire lengths required, we get a component placement problem.
Since Koopmans and Beckmann [18] first used a QAP formulation in the context of Facility
Layout Planning, more than fifty articles have appeared in the OR literature proposing heuristics
procedures and enumerative schemes for QAP. Among the more influential of these have been
Hillier and Connors [11], Beghin-Picavet and Hansen [2], Burkard and Bonniger [3], Bazaraa
and Kirca [1], Picone and Wilhelm [20], Wilhelm and Ward [23], Heragu and Kusiak [10], and
Kaku et al. [17].

QAP is known to be NP-complete [8]. We describe below an approach for finding consistently
good solutions to instances of QAP using a genetic algorithm (GA) framework, and show that this
approach yields solutions comparable to the best previously-known heuristics for QAP when applied
to test problems from the literature. We argue that this method is not overly costly in terms of
computation effort, and is exceptionally robust both with respect to variations in the objective
function, constraints of the problem, and the details of the GA implementation. We conclude with
some general remarks about the implementation of GAs, motivated by our observations in this study.

2. OVERVIEW OF GENETIC ALGORITHMS

The phrase “genetic algorithms™ denotes a family of parallel, randomized-search optimization
heuristics which share the following features:

(a) One or more “populations” of feasible solutions.

(b) A mechanism for generating new feasible solutions by combining features from
multiple previously-known solutions.

(c) A mechanism for generating a new feasible solution by a random perturbation
of a single previously-known solution.

(d) A mechanism for selecting individual solutions from the population(s), giving
preference to those with better objective function values.

(¢) A mechanism for removing solutions from the population(s).

The motivation for GA is the biological paradigm of natural selection as first articulated by Holland
[13]. We thus refer to the mechanism of (b} above as a breeding or reproduction mechanism, that
of (c) as a mutation mechanism, that of (d) as a selection mechanism and that of (e) as a culling
mechanism. The basic flow of any GA implementation is thus given by the following:

1. Create an initial population or sub-populations of solutions, usually feasible and
random.
2. Repeat {

2.1 Select parents.

2.2 Breed offspring, and add them to the population.

2.3 Mutate certain members of the current population.

2.4 Cull certain members of the current population.

3. Until (some termination criterion is met).
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There is a great deal of flexibility in the choice of how (and when) to select, breed, mutate and
cull individuals in the population. For example, we might choose to replace all members of the
current population with bred offspring at every generation of the algorithm. We might decide to
incorporate the possibility of mutation within our breeding algorithm, or to mutate individuals
separately. We might select parents according to their absolute fitness (the objective function value),
or their rank in the current population, or some other criterion. We might maintain one large
population, or several smaller, parallel sub-populations.

Perhaps more importantly, there are any number of different possible breeding and mutation
schemes for a given problem type, which will in turn depend on how we choose to encode solutions.
Typically, breeding and mutation algorithms operate on solutions only through this encoding, so
that a particular choice of encoding imposes a topology on the response surface of the underlying
optimization problem. This can have profound effects on the success of a GA approach to a given
problem family; a particularly clever encoding can restrict the necessary search area to be an
extremely small subset of all feasible solutions, while at the same time allowing computationally
efficient breeding and mutation of new feasible solutions. We will elaborate on this observation in our
concluding remarks.

Since Holland’s seminal work, GAs have been applied to such optimization problems as job
shop scheduling by Davis [6], sizing of communications networks by Davis and Coombs [7],
Flexible Manufacturing System scheduling [15], and multiprocessor task scheduling [14,21]. A
component placement problem, related to the QAP, has been addressed using genetic algorithms
by Cohoon and Paris [5] and Cohoon et al. [4].

3. THE GENETIC ALGORITHM APPROACH TO THE QUADRATIC ASSIGNMENT PROBLEM

3.1. Encoding, selection and reproduction

We applied genetic search to the QAP. For the test problems considered, the possible sites for
assignment are a rectangular lattice of locations in the plane, with the inter-site distance computed
either by Euclidean (L,) norm or Manhattan (L,) norm. Sites were ordered in boustrophedon
sequence by rows, establishing a one-to-one correspondence between sequences of {1, 2,..., n} and
feasible assignments. The number of rows and columns were pre-specified and fixed, and unused
sites were assigned “dummy” objects with no traffic in or out. Each population member was a
feasible solution (i.e. each object is assigned a unique site).

Since we did not use a traditional binary encoding for solution strings, we were able to design
reproduction and mutation functions which operate directly on the solution sequence. Mutation
and reproduction were completely independent, unlike most GA implementations where mutation
only takes place on a newly formed child. We selected solutions for mutation from the entire
population with uniform probability. Mutation took the form of selecting two sites at random and
reversing the order of all sites within the subsequence bounded by the two selected. For selected
sites either adjacent, or one space apart in the boustrophedon sequence, this reduces to pairwise
interchange.

Selected String: B C F A G E H D
Random Mutation Sites: X X
Mutated String: B G A F C E H D

Selection for reproduction was performed with a bias towards choosing the better solutions in
the current population. We chose not to select proportional to objective function value, as is done
with the traditional biased roulette wheel approach. Instead, we selected parent strings by choosing
a uniform random number between 1 and \/m (where m is the population size), then squaring it.
The result was truncated and taken to be the rank of the selected parent (where string zero is the
fittest string in the population). This approach can be generalized to give an arbitrary degree of
preference or even varied dynamically during a given run by changing the power of the root of m
during subsequent generations.

We could not adopt the standard crossover since it would not maintain feasibility of our
non-binary coding. Our reproduction scheme was as follows. Any object assigned to the same site
in both parents occupies that site in the offspring. For the remaining sites, one or the other objects
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assigned to that site in one parent is chosen at random, working left to right through the sequence
of sites. Any unassigned objects are then matched with the remaining unassigned sites. This
reproduction scheme is notable for its ability to generate multiple potentially different children
from the same two parents. An example is shown below.

Parent 1: D C A H F E B G
Parent 2: F A E H B D C G
Common Locations: ~—— — H — — — G
Random Choice: D A E H F — B G
Leftover: C

Finished Child: DA E H F C B G

For each generation, the number of children to be produced was selected in advance, as was the
probability of a given individual generating a mutant. A mutant was distinct from the individual
which spawned it, and both had opportunities to survive. As children and mutants were created,
the strings with worst fitness were culled to keep a constant population size. Thus, a new child
might be deleted from the population in the same generation as its creation. To maintain enough
diversity, mutants were inserted into the population after members of the current generation had
been culled. In this way, mutants, no matter what their fitness, were assured to survive at least one
generation and be available for reproduction selection. The single best solution was always retained
unaltered for the next generation to encourage convergence.

3.2. Description of test problems and methodology

The most well known QAP instances for rectilinear distance are those eight defined in Nugent
et al. [19], with fifteen subsequent research results summarized in Hundal [16]. These range in
size from 5 objects (6 sites) to 30 objects (30 sites), where the traffic matrix is assumed symmetric.
For formulations where the number of sites is greater than the number of objects, we defined
dummy objects with zero traffic interaction. For the 7 object problem with 9 sites, we used 2 dummy
objects which were forced to be adjacent by a large T;; between them. Another special case of the
rectilinear QAP is that cited in Cohoon et al. [4], consisting of 16 sites and objects with binary
traffic costs (i.e. the T;; matrix consists of 1s and Os only).

The most well known Euclidean distance QAP problem is a 36 site and 34 object computer
component placement problem first documented in Steinberg [22]. This problem served as a
comparison for at least seven subsequent works, and results are summarized in Hanan and
Kurtzberg [9]. The 34 objects are set in a 4 by 9 grid of sites, and we included two dummy
departments, not forced together. We note that the original Steinberg paper contains an error in
the Connection Matrix (his Fig. 1), and we assume that the correct entry for the number of
connections between E28 and E29 is 10, rather than 0, as one of Steinberg’s entries indicates. As
another test of a Euclidean distance problem, we formulated a 25 site and object problem where
we would know the optimum a priori. This problem is shown in Fig. 1.

We ran our GA on each problem multiple times. This was for two reasons. First, GAs are
stochastic and therefore yield different searches, and potentially different results, for each random
number seed used. We arbitrarily selected ten seeds and used those same seeds to create ten genetic
runs for each problem. These ten runs tested the dependence of the method on the seed selected,
both in terms of solution quality and search effort. The second aspect of multiple runs was to test
the best mix of reproduction and mutation parameters for our particular genetic algorithm. Since
we had not worked with this implementation before we had no basis for choosing the best mix a
priori. We ran each problem and each random number seed with the following three mixes, listed
in order of decreasing randomness: 25% children and 75% probability of mutation, 50% children
and 50% probability of mutation, and 75% children and 25% probability of mutation. The percent
children refers to the number of children created each generation as a percent of population. The
probability of mutation is the probability that any one solution will undergo mutation during a
generation, so that a 25% mutation probability will yield an expected value of 25 mutants per
generation for a population of 100. Other than the three parameter mixes and the ten random
number seeds, the GA algorithm was unchanged for each run.

The experiment totaled 30 runs for each of the eleven problems. Each run consisted of a fixed
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Fig. 1. Our 25 site Euclidean problem. Where heavy line traffic = 50 and light line traffic = 10, and each
site is a unit square.

Table 1. Objective function values of solutions found

25% Child/75% Mut. 50% Child/50% Mut. 75% Child/25% Mut.

Problem Best Mean C. Var. Best Mean C. Var. Best Mean C. Var.
5/6 R 25* 25* 0.0 25% 25* 0.0 25* 25*% 0.0
6/6 R 43* 43* 0.0 43* 43* 0.0 43* 43* 0.0
7/9 R 74* 74* 0.0 74* 74* 0.0 74* 74.7 0.008
8/8 R 107* 107* 0.0 107* 107* 0.0 107* 107.5 0.01
12/12 R 289* 291.4 0.007 289* 294 0.013 289* 2979 0.018
15/15R 575% 585 0.011 576 589.5 0.017 581 596.5 0.015
20/20 R 1304 13217 0.008 1309 1320.1 0.007 1299 1335.7 0.013
30/30 R 3092 31527 0011 3092 3160 0013 3113 3181.6 0.011
16/16 R 48* 54.4 0.152 48* 58 0.150 48* 61.8 0.104
25/25 E 1625.1 1768.3 0.036 1624.6* 1768.4 0.042 1758.8 18284 0.031
34/36 E 4296.0 4473.1 0.023 4271.5 43822 0.030 4385.6 4490.5 0.016

*Equal to, or better than, the best previously published solution.

population size of 100 solutions with a randomly generated initial feasible population of 100
individuals. The search was allowed to continue until either the optimum had been reached (if it
was known) or 2000 generations had passed. The best solution yet found and total number of
solutions generated were recorded every 20 generations. The number of solutions generated was
not adjusted for duplicates, and therefore represents an overestimate of the number of unique
solutions investigated.

3.3. Results

Table 1 shows the objective function values of the best and mean solutions and the coefficient
of variation over the ten solutions for each parameter mix. Asterisks denote best known solution
values, i.e. equal to or better than the best previously published solution. Solutions reported without
asterisks are greater than the best previously published solutions, as is more fully detailed in Table
3. Problems are denoted by first the number of objects, then the number of sites, and then the
distance measure [rectilinear (R) or Euclidean (E)].

For each test problem, we show in the Appendix one configuration of the best solution found
by this genetic algorithm approach with its objective function value. We found overall that our
best mix of reproduction and mutation was the most stochastic one with 25% children and 75%
probability of mutation, however results are not dramatically different for the 50% children and
50% mutation formulation. The 75% children and 25% mutation was consistently worst in terms
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Fig. 2. CPU time per solution generated for each problem.
Table 2. Number of solutions explored before finding the best
25% Chiid/75% Mut. 50% Child/50% Mut. 75% Child/25% Mut.

Problem Quick Mean C. Var. Quick Mean C. Var. Quick Mean C. Var.
5/6 R 269 2774 0.018 243 290 0.176 203 344.7 0.696
6/6 R 272 399.8 0.306 194 349.7 0.375 174 706.2 0.810
7/9R 384 1153.7 0.986 192 784.8 0.726 430 1382 0.690
8/8 R 384 13429 0.588 214 6854.3 1.946 236 2328.1 1.117
12/12 R 2097 18,892 1.351 2069 7100 0.653 2084 13,323 2.037
15/15R 4080 39,099 1.124 2091 9481.2 1.105 2082 21,907 1.723
20/20 R 8150 75,084 0.920 4093 70,249 0.944 2099 33,105 1.489
30/30 R 13,633 110,010 0.581 13,211 84,499 0.686 92,185 148,151 0.273
16/16 R 4107 14,707 1.21 2126 13,493 0910 2068 25,915 1.164
25/2S E 20,118 72,262 0.546 8147 56,496 1.040 26,093 83,330 0.776
34/36 E 32,125 123,650 0.410 38,059 145,674 0.333 26,093 122,331 0.446

of average solution quality. The success of our high mutation rate is probably due to the conservative
nature of both our reproduction and mutation, i.e. much of the structure of the original string is
generally left intact through these operations. Differences existed for different random number seeds,
but solution quality was within a few percentage points, as evidenced by the extremely low
coefficient of variation over the 10 seeds (except for the 16 department problem with 0 or 1 flows).
In stochastic search, an approach which is robust with respect to solution quality is a paramount
concern. Our GA not only performed well, it performed well consistently. As with any stochastic
search method, multiple runs are desirable if the problem is large or complex, and near-optimality
is required.

For NP-complete problems of medium to large size, the search effort required to attain a given
level of quality is extremely important. In Fig. 2 we show the CPU time per solution generated
for each problem size on an Iris 4D25 workstation running under UNIX. (Our GA was coded in
ANSI C, and we did not try to optimize for computational performance.) We generated approx.
200,000 solutions per GA run. Since effort increases primarily for the distance calculation, we
estimate the increase in computational effort per solution generated is quadratic with the number
of sites.

Since CPU time is highly dependent on hardware and software, we also report the number of
solutions evaluated to find the best solution among the 2000 generations. Table 2 shows the least
number of solutions searched to find a single run’s best solution (the column titled “Quick”), the
mean number of solutions searched over the ten seeds, and the coefficient of variation of solutions
searched over the ten seeds. Since the coefficient of variation among runs is large, we cannot draw
conclusions about the number of solutions needed to be generated for a given problem size from
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Table 3. Our results as a percent over best known solutions

25% C/75% M 50% C/50% M 75% C/25% M
Problem Best Worst Best Worst Best Worst
5/6 R 0 0 0 0 0 0
6/6 R 0 0 0 0 0 0
7/9 R 0 0 0 0 0 2.299
8/8 R 0 0 0 0 0 2.804
12/12 R 0 1.384 0 4.152 0 5.536
15/15 R 0 3.130 0.174 6.435 1.043 6.087
20/20 R 0.696 3.403 1.237 3.403 0464 5.027
30/30 R 0422 4.190 0.422 5.391 1.104 4.774
16/16 R 0 33.33 0 41.67 0 41.67
25/2S E 0 15.075 —~0.033* 16.606 8.228 18.979
34/36 E 1.752 10.602 1.173 10.614 3.863 8.942

*The solution found bested our a priori “optimum” solution by an innovative reconfiguration.

our research. We can make two general observations, however. First, the mean number of solutions
explored to attain comparable quality solutions generally increases with problem size. Second, the
fraction of solution space explored for comparable quality solutions decreases rapidly with problem
size.

Another important comparison is to previously published results or known optimum results.
This is possible for all of our problems with the exception of the 25 object/site Euclidean problem
which we devised and for which we assumed (incorrectly) the pre-formulated solution to be the
optimum. Table 3 shows our best found solution over the 10 runs of each problem as a percent
above the best known solution. To show the reliability of our approach, Table 3 also shows the
worst final solution found as a percent over the best known solution. Our best solutions were
generally optimum, or within a few percentage points. Worst solutions were still reasonable, with
the notable exception of the 16 object/site rectilinear problem, where a miss carried a high penalty
because of the 0/1 flow matrix.

With regard to the quality of our best solutions, for the classical rectilinear problems of Nugent
et al. one approach’s best solution consistently bettered ours. This approach, the terminal sampling
procedure of Hitchings and Cottam [12], found better solutions for the 20 and 30 objects/sites
problems. The improvement was <0.25% however, and, at least for the 30 site problem, our mean
solution was better than the average of the solutions they report. It is not known whether these
reported solutions were representative. They did not report any results other than their best found
for the 20 site problem. The only approach which improved in quality of solutions over ours for
the 34 object/36 site Euclidean problem was Raymond’s Linearization [9]. Our results during
evolution for this problem using the three different GA parameter mixes are shown in Fig. 3, along
with four other well known approaches (Raymond’s Linearization as the x axis or baseline solution,
and Hillier’s Interchange, Gilmore’s n* Algorithm and Steinberg shown as dashed lines at their
best found solution level).

As mentioned earlier, the genetic search found an unexpected best solution for the 25 site
Euclidean problem. For the 16 site rectilinear problem from Cohoon et al. [4], our GA approach
performed considerably better than both the genetic approach and simulated annealing approach
tested by those authors. Cohoon et al’s GA is tailored to a more general problem, however, in
which potential locations are also variable, and not all assignments are feasible. The only conclusion
we draw is that the QAP, as a special case of the placement problem, benefits substantially from
a special purpose algorithm.

4. INTERPRETATION OF RESULTS

The performance of this GA implementation is very encouraging. A simple mutation and
reproduction scheme was able to match the best known heuristics from previous research, without
careful selection of mutation rate, population size, or any other specific parameters of the
implementation. This suggests, on the one hand, that there is potential for improved performance
by a GA with a more sophisticated reproduction or mutation scheme, so that this implementation
is not necessarily a “dead end” for this problem class. On the other hand, the apparent robustness
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Fig. 3. Our results compared to previous research for the 34 object problem.

of the implementation with regard to initial settings allows us to be optimistic that one can achieve
near-optimal solutions quickly without having a fine-tune sensitive parameters of the implementation,
or to explore a wide variety of encodings and generation algorithms. The excellent average-case
performance of the GA approach across different initial populations and pseudo random number
seeds reinforces this impression of robustness.

There are a few important general conclusions that are suggested by the experimental results.
The first has to do with the importance of culling. Figure 4 shows a comparison of the average
convergence rates of the “best solution found by kth generation” for three different sets of runs,
using pure mutation (i.e. no reproduction). Each of the three sets generated approx. 200,000
solutions. The only difference among them was in what fraction of the population was culled in
each generation. In the case of 100% culling, each generation represents only the mutated “offspring”
of the previous generation’s individuals. Convergence is slow, and does not seem to be converging
toward the best known solutions. At the other extreme, replacing only the bottom 25% of the
population in any given generation leads to convergence almost as fast and deep as that of the
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runs with both reproduction and mutation. The continued survival of a large fraction of the
population’s best individuals has a pronounced effect on both the quality of solutions obtained
and the speed with which those solutions are found.

Our second general conclusion has to do with the preservation of feasibility in generating offspring
and mutants from existing feasible solutions. Some previous GA implementations use reproduction
and mutation operators which are not guaranteed to produce feasible solutions, even when applied
to feasible solutions. Since infeasible offspring are generally discarded the population remains
unchanged, and the implementation incurs all the computational penalties of search, but none of
the potential benefits. We believe that the combinatorial size of most problems makes it imperative
that GA reproduction and mutation only produce feasible encodings. Consider for the relatively
small 15-site problem, there are 15! (x 1.3 x 10!2) different sequences. Even allowing for symmetric
configurations, there are more than 10! distinct feasible assignments. And yet our GA, in examining
< 200,000 of these solutions (or 0.0000006 of the total), often equaled the best known solution.

As a further example, consider the 16-site problem described by Cohoon et al. [4]. They present
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this as a special case of a general problem involving determining the shape and placement of
computer components, subject to constraints on allowable aspect ratio. For the general problem,
they consider costs arising from interconnection of components (as in QAP) and from the total
area of all components. Their encoding is a representation of an arbitrary sequence of bisecting
refinements of a planar partition. In the special case of QAP, this requires the algorithm not only
to find the optimal assignment of components to sites in a rectangular lattice, but also to recognize
that a rectangular lattice is the only feasible configuration which uses minimum area. To further
complicate matters, it is not clear that the mutation and reproduction operators always preserve
feasibility. As a result, for comparable computational effort (200,000 solutions generated), the
Cohoon GA is strongly dominated by our GA implementation. This is not an indictment of the
Cohoon method; it is merely evidence that there are good reasons to choose an encoding which
is as problem-specific as is possible for any known special structure of the problem instance at
hand, and that any work expended in generating solutions infeasible for this instance carries a high
penalty.

Finally, it should be noted that it became obvious fairly early in the experimental testing that
certain mixes of mutation and reproduction consistently outperformed other mixes for these
problems. Had we merely been interested in finding the best overall solution for a given amount
of computational effort, we would have dynamically adjusted our mix as we became aware of these
trends. Certaintly, there was no reason to continued running 25% mutation runs except for
completeness of results reported in this paper. Similarly, observation of the convergence rates of
various runs would have led us to adjust our number of generations per run downward, saving
CPU time with little or no cost in objective function value. We might very well have obtained
better solutions by running half as many generations with twice as many seeds. We leave
quantification of this effect for further research.

In summary, we have shown that our genetic approach to QAP yields solutions comparable to
those of the best previously reported heuristics without extreme computational requirements. The
best solutions found over a moderate number of test runs were invariably within a few percent of
the best known solutions, and the average quality of the GA solutions were at least as good as
those from previous heuristics for which average cases were reported. We note that there appear
to be strong advantages to encodings and generation operators which are as problem specific as
possible, and which preserve feasibility in all cases. From the observed robustness of the algorithm
and encoding, we conjecture that extension of the GA methodology to more complex assignment
and placement problems will also be effective and practical.
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APPENDIX
One of Our Best Solutions to Each Test Problem
4 D 13 |1 11 |20 |7
5 1 3 10 | 9 12 114 |3
S 8 15 {2 6
5 Object / 6 Site Rectilinear 19 116 | 4 17 | 18
Cost = 25.
20 Object / 20 Site Rectilinear
Cost = 1299.
3 2 1
4 S 6 14 | 4 30 127 |18 | 15
23 129 (24 |11 (20 |17
6 Object / 6 Site Rectilinear 3 16 |12 |8 21 |1
Cost = 43. 22 {10 |13 {9 |7 |19
5 2 28 |25 |6 26
S 3 2 30 Site / 30 Object Rectilinear
D 6 1 Cost = 3092.
D 7 4
1 2 3 4
7 Object / 9 Site Rectilinear 5 6 7 8
Cost = 74. 9 10 {11 } 12
13 |14 |15 |16
7 6 5 3 .
) 4 1 2 16 Object / 16 Site Rectilinear
Cost = 48.
8 Object / 8 Site Rectilinear
Cost = 107. 16 [25 [24 |23 |22
15 {17 |18 |19 |21
3 19 |6 12 6 |8 [13 [14 [20
1 11 15 14 5 17 (1219 |11
2_j10 [7 )8 4 [3 |2 11 T
12 Object / 12 Site Rectilinear 25 Object / 25 Site Euclidean
Cost = 289. Cost = 1624.6.
12 15 110 |15 |6 33 [34 [31 [30 J29 [15[3 [16 [D
11 19 114 13 14 26 (32 [28 [14 [12 [13[5 |18 |17
7 18 [1312 |1 25 (19 [23 [20 [11 4 |8 [2
15 Object / 15 Site Rectilinear 24 121 12212716 |1 [10]9 |D

Cost = 575. 34 Object / 36 Site Euclidean

Cost = 4271.5.



