IE 607 Heuristic Optimization

Introduction to Optimization Part II

Algorithm Design \& Analysis

Steps:

- Design the algorithm
- Encode the algorithm

Steps of algorithm
Data structures

- Apply the algorithm

Algorithm Efficiency

- Run-time
- Memory requirements
- Number of elementary computer operations to solve the problem in the worst case

Study increased in the 70's

Complexity Analysis

- Seeks to classify problems in terms of the mathematical order of the computational resources required to solve the problems via computer algorithms
- Judge a problem whether we can find a polynomial-time algorithm to solve it
- Decide the "right" approach to solve a problem
- Problem is a collection of instances that share a mathematical form but differ in size and in the values of numerical constants in the problem form (i.e. generic model). Example: shortest path.
- Instance is a special case of problem with specified data and parameters.
- An algorithm solves a problem if the algorithm is guaranteed to find the optimal solution for any instance.

Complexity Measures

- Empirical Analysis
- see how algorithms perform in practice
- write program, test on classes of problem instances
- Average Case Analysis (Expected Case Analysis)
- determine expected number of steps
- choose probability distribution for problem instances, use statistical analysis to derive asymptotic expected run times

Complexity Measures (cont.)

- Worst Case Analysis
- provides upper bound (UB) on the number of steps an algorithm can take on instance
- count largest possible number of steps
- provides a "guarantee" on number of steps the algorithm will need

Complexity Measures (cont.)

- CONs of Empirical Analysis
- algorithm performance depends on computer language, compiler, hardware, programmer's skills
- costly and time consuming to do
- algorithm comparison can be inconclusive

Complexity Measures (cont.)

- CONs of Average Case Analysis
- depends heavily on choice of probability distribution
- hard to pick the probability distribution of realistic problems
- analysis often very complex
- assumes analyst solving multiple problem instances

Complexity Measures (cont.)

- Worst Case Analysis PROs
- independent of computing environment
- relatively easy
- guarantee on steps (time)
- definitive

CONs

- simplex method exception
- algorithm comparisons can be inconclusive

Big "O" Notation

- A theoretical measure of the execution of an algorithm given the problem size n.
- An algorithm is said to run in $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ time if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ (of order $\mathrm{g}(\mathrm{n})$) and there are positive constants c and k , such that $0 \leq f(n) \leq c g(n)$ for all $n \geq k$ (i.e. the time taken by the algorithm is at most $\mathrm{cg}(\mathrm{n})$ for all $n \geq k$).

$$
\text { " } f \text { of } n \text { is big o of } g \text { of } n "
$$

Big "O" Notation (cont.)

- Usually interested in performance on large instances
- Only consider the dominant term

Example: $100 n+1000 n^{2}+0.01 n^{3}$

$$
\rightarrow \quad O\left(n^{3}\right)
$$

Polynomial vs ExponentialTime Algorithms

- What is a "good" algorithm?
- It is commonly accepted that worst case performance bounded by a polynomial function of the problem parameters is "good". We call this a Example: $O\left(n^{3}\right)$
- Strongly preferred because it can handle arbitrarily large data

Polynomial vs ExponentialTime Algorithms (cont.)

- In Exponential-Time Algorithms, worst case run time grows as a function that cannot be polynomially bounded by the input parameters. Example: $O\left(2^{n}\right) \quad O(n!)$
- Why is a polynomial-time algorithm better than an exponential-time one?
\rightarrow Exponential time algorithms have an explosive growth rate.

Polynomial vs ExponentialTime Algorithms (cont.)

	$\mathrm{n}=5$	$\mathrm{n}=10$	$\mathrm{n}=100$	$\mathrm{n}=1000$	
n	5	10	10^{2}	10^{3}	
n^{2}	25	100	10^{4}	10^{6}	
n^{3}	125	1000	10^{6}	10^{9}	
nlogn		10	2×10^{2}	3×10^{3}	
2^{n}	32	1024	1.27×10^{30}	1.07×10^{301}	
$\mathrm{n}!$	120	3.6×10^{6}	$9.33 \times 10^{157} 4.02 \times 10^{2567}$	15	

Optimization vs Decision Problems

- Optimization Problem

A computational problem in which the object is to find the best of all possible solutions. (i.e. find a solution in the feasible region which has the minimum or maximum value of the objective function.)

- Decision Problem

A problem with a "yes" or "no" answer.

- Convert Optimization Problems into equivalent Decision Problems

What is the optimal value?
\rightarrow Is there a feasible solution to the problem with an objective function value equal to or superior to a specified threshold?

Class P

- The class of decision problems for which we can find a solution in time. i.e. \mathbf{P} includes all decision problems for which there is an algorithm that halts with the correct yes/no answer in a number of steps bounded by a polynomial in the problem size n.
- The Class P in general is thought of as being composed of relatively "easy" problems for which efficient algorithms exist.

Examples of Class P Problems

- Shortest path
- Minimum spanning tree
- Network flow
- Transportation, assignment and transshipment
- Some single machine scheduling problems

Class NP

- NP = Nondeterministic Polynomial
- NP is the class of decision problems for which we can check solutions in polynomial time.
i.e. easy to verify but not necessarily easy to solve
Example: easy to verify the correctness of a mathematical proof but difficult to generate a mathematical proof

Class NP (cont.)

- Formally, it is the set of decision problems such that if x is a "yes" instance then this could be verified in polynomial time if a clue or certificate whose size is polynomial in the size of x is appended to the problem input.
NP includes all those decision problems that could be polynomial-time solved if the right (polynomial-length) clue is appended to the problem input.
Extra information so the correctness of an answer to a decision problem can be quickly checked.

Class NP (cont.)

- Given a hypothetical solution to a decision problem, if one can efficiently check that all constraints are met (i.e., feasible) \& compute the objective function to compare with the bound, then the problem is in NP.
Example: composite number problem

Class P vs Class NP

- Class \mathbf{P} contains all those that have been conquered with well-bounded, constructive algorithms.
- Class NP includes the decision problem versions of virtually all the widely studied combinatorial optimization problems.
- \mathbf{P} is a subset of $\mathbf{N P}$.

NP Hard vs NP Complete

- When a decision version of a combinatorial optimization problem is proven to belong to the class of NP-Complete problems, an optimization version is NP-Hard.
-NIST Dictionary of Algorithms
\& Data Structure

NP Hard vs NP Complete (cont.)

- A problem is said to be NP-Hard if all members of NP polynomially reduce to this problem. $\rightarrow \boldsymbol{N P}$-Hard problems are at least as hard as or harder than any problem in $\boldsymbol{N P}$.
- A problem is said to be NP-Complete if (a) it ? NP, and (b) it is NP-Hard. \rightarrow NP-Complete problems are the hardest problems in $N P$.

- Cook's Theorem: If there is an efficient (i.e. polynomial) algorithm for some NP-Complete problem, then there is a polynomial algorithm existing for all problems in NP. $\rightarrow \mathbf{P}=\mathbf{N P}$
- Examples of NP-Hard problems:

TSP, graph coloring, set covering and partitioning, knapsack, precedence-constrained scheduling, etc.

Reference

- NIST Dictionary of Algorithms \& Data Structure
http://www.nist.gov/dads/
- Comp. Theory FAQ
http://db.uwaterloo.ca/~alopez-o/compfaq/faq.html

Polynomial(-time) Reduction

- A transformation of one problem into another which is computable in polynomial time.
- Problem \mathbf{P} reduces in polynomial-time to another problem \mathbf{P}^{\prime}, if and only if, - there is an algorithm for problem \mathbf{P} which uses problem \mathbf{P}^{\prime} as a subroutine,
- each call to the subroutine of problem \mathbf{P}^{\prime} counts as a single step,
- this algorithm for problem \mathbf{P}^{\prime} runs in polynomial-time.
- If problem \mathbf{P} polynomially reduces to problem \mathbf{P}^{\prime} and there is a polynomial-time algorithm for problem \mathbf{P}^{\prime}, then there is a polynomial-time algorithm for problem \mathbf{P}.
\rightarrow Problem \mathbf{P}^{\prime} is at least as hard as problem $\mathbf{P}!$ i.e., If \mathbf{P}^{\prime} can be used to solve instances of \mathbf{P}, then \mathbf{P}^{\prime} is at least as hard as or harder than \mathbf{P}.

$\mathbf{P} \quad \mathbf{P}^{\prime}$
easy \leftarrow easy
hard \rightarrow hard

