|E 607 Heuristic Optimization

|ntroduction to Optimization
Part ||

Algorithm Design & Analysis

Steps:

e Designthe agorithm

* Encode the algorithm
Steps of algorithm
Data structures

« Apply the algorithm

Algorithm Efficiency

* Run-time
e Memory requirements

 Number of elementary computer operations to
solve the problem in the worst case

Study increased inthe 70’s

Complexity Analysis

o Seeksto classify problemsin terms of the
mathematical order of the computational
resources required to solve the problems via
computer algorithms

 Judge a problem whether we can find a
polynomial-time algorithm to solve it

e Decidethe “right” approach to solve a problem

e Problem isacollection of instances that share
amathematical form but differ in szeand in
the values of numerical constants in the

problem form (i.e.).
Example: shortest path.

* Instanceisagpecial case of problem with
specified data and parameters.

e Analgorithm a problem if the algorithm
IS guaranteed to find the optimal solution for
any Instance.

Complexity Measures

« Empirical Analysis
- see how algorithms perform in practice

- write program, test on classes of problem
INstances

 Average Case Analysis (Expected Case Analysis)
- determine expected number of steps

- choose probability distribution for problem
Instances, use statistical analysisto derive
asymptotic expected run times

Complexity Measures (cont.)

« Worst Case Analysis

- provides upper bound (UB) on the
number of steps an algorithm can take on
Instance

- count largest possible number of steps

- provides a “guarante€’ on number of
steps the algorithm will need

Complexity Measures (cont.)

e CONsof Empirical Analysis

- algorithm performance depends on
computer language, compiler, hardware,
programmer’ s skills

- costly and time consuming to do
- algorithm comparison can be inconclusive

Complexity Measures (cont.)

e CONsof Average Case Analysis

- depends heavily on choice of probability
distribution

- hard to pick the probability distribution of
realistic problems

- analysis often very complex

- assumes analyst solving multiple problem
Instances

Complexity Measures (cont.)

Worst Case Analysis

PROs

- Independent of computing environment

- relatively easy

- guarantee on steps (time)

- definitive

CONs

- ssmplex method exception

- algorithm comparisons can be inconclusive

10

Big “O” Notation

A theoretical measure of the execution of an
algorithm given the problem size n.

 Analgorithmissaidto runin O(g(n)) timeif

) (of order g(n)) and there are
positive constants ¢ and k, such that

O£ f(n)Ecg(n) foral n3 k (i.e thetime
taken by the algorithm is at most cg(n) for all

ns3 k).

“fof nishigoof gof n” 1

Big “O” Notation (cont.)

o Usually interested in performance on large
Instances

e Only consider the dominant term
Example: 100n +1000n* + 0.01n®

2 O(n’)

Polynomial vs Exponential-
Time Algorithms

 What iIsa“good” algorithm?
It iscommonly accepted that worst case
performance bounded by a polynomial

function of the problem parametersis “good”.
We call thisa

Example: O(n°)
o Strongly preferred because it can handle
arbitrarily large data

13

Polynomial vs Exponential-
Time Algorithms (cont.)

 In Exponential-Time Algorithms, worst case
run time grows as a function that cannot be
polynomially bounded by the input parameters.

Example O(2") O(n')

* Why is apolynomial-time algorithm better
than an exponential-time one?
-> Exponentia time algorithms have an

explosive growth rate.

14

Polynomial vs Exponential-
Time Algorithms (cont.)

n=5 n=10 n=100 n=1000
n 5 10 102 103
n |25 100 10% 10°
n® | 125 1000 10° 10°
nlogn 10 2 X 102 3x 103
2" |32 1024 1.27 x 1030 1.07 x 103%1
n! 120 3.6x 10° 9.33x10%7 4.02x 10%°67 15

Optimization vs Decision
Problems

e Optimization Problem

A computational problem in which the object
Isto find the best of all possible solutions. (i.e.
find a solution in the feasible region which has
the minimum or maximum value of the
objective function.)

e Decision Problem
A problem with a“yes’ or “no” answer.

16

o Convert Optimization Problemsinto
equivalent Decision Problems

Wheat Is the optimal value?

—>|sthere afeasible solution to the problem
with an objective function value equal to or
superior to a specified threshold?

17

Class P

e The class of decision problems for which we
can find asolution in time.

I.e. P includes all decision problems for which
there is an algorithm that halts with the correct
yes/no answer in anumber of steps bounded
by apolynomial in the problem size n.

 TheClass P in generd isthought of as being
composed of relatively “easy’ problems for
which efficient algorithms exist.

18

Examples of Class P Problems

Shortest path

Minimum spanning tree

Network flow

Transportation, assignment and transshipment
Some single machine scheduling problems

19

Class NP

NP = Nondeterministic Polynomial
* NP isthe class of decision problemsfor which

we can solutions in polynomial time.
l.e. easy to but easy to
solve

Example: easy to verify the correctness of a
mathematical proof but difficult to generate a
mathematical proof

20

Class NP (cont.)

 Formally, it isthe set of decision problems
such that iIf xisa“yes’ instance then this could
be N timeif aclueor

scertificatewhose size is polynomial in the size
of X Is appended to the problem input.

NP includes all those decision problems that
could be polynomial-time solved if the right
(polynomial-length) clue is appended to the

problem Input.

Extrainformation so the correctness of an answer
to a decision problem can be quickly checked.

21

Class NP (cont.)

« Glven ahypothetical solution to adecision
problem, If one can efficiently check that all
constraints are met (i.e., feasible) & compute
the objective function to compare with the
bound, then the problem isin NP.

Example: composite number problem

22

Class P vs Class NP

e Class P contains adl those that have been

conguered with well-bounded, constructive
algorithms.

e Class NP includes the decision problem
versions of virtually all the widely studied
combinatorial optimization problems.

e Pisasubset of NP.

23

NP Hard vs NP Complete

 \When adecision version of a combinatorial

optimization problem Is proven to belong to
the class of NP-Complete problems, an
optimization version is NP-Hard.

-NIST Dictionary of Algorithms
& Data Structure

24

NP Hard vs NP Complete (cont.)
e A problemissaidto be NP-Hard if all
members of NP to this

problem.-> NP-Hard problems are at least as
hard as or harder than any problem in NP.

o A problem issadto be NP-Completeif (a) It
? NP, and (b) it isNP-Hard.-> NP-Complete
problems are the hardest problemsin NP.

(o

NP Complete

25

e Cook’s Theorem: If thereis an efficient (i.e.
polynomial) algorithm for some NP-Complete
problem, then there is a polynomial algorithm
existing for all problemsin NP.-> P = NP

e Examples of NP-Hard problems:

TSP, graph coloring, set covering and
partitioning, knapsack, precedence-constrained
scheduling, etc.

26

Reference

* NIST Dictionary of Algorithms & Data
Structure

http://www.nist.gov/dads/
e Comp. Theory FAQ

http://db.uwater|l 0o.ca/~al opez-o/comp-
fag/fag.ntml

27

Polynomial (-time) Reduction

A transformation of one problem into another
which is computable in polynomial time.

Problem P reduces in polynomial-timeto
another problem P, if and only if,

- there is an algorithm for problem P which
uses problem P as a subroutine,

- each call to the subroutine of problem P
counts as asingle step,

- thisalgorithm for problem P” runsin
polynomial-time. %

Polynomial (-time) Reduction (cont.)

 If problem P

to problem

P~ and there is a polynomial-time algorithm
for problem P, then there is a polynomial-time

algorithm for problem P.

—>Problem P is at least as hard as problem P!
1.e., If P° can be used to solve instances of P,
then P" Isat least as hard as or harder than P.

P P

easy < easy
hard—-> hard

éééi)

