IE 607 Heuristic Optimization

Introduction to Optimization Part II

Algorithm Design & Analysis

Steps:

- Design the algorithm
- Encode the algorithm Steps of algorithm Data structures
- Apply the algorithm

Algorithm Efficiency

- Run-time
- Memory requirements
- Number of elementary computer operations to solve the problem in the worst case

Study increased in the 70's

Complexity Analysis

- Seeks to classify problems in terms of the mathematical order of the computational resources required to solve the problems via computer algorithms
- Judge a problem whether we can find a polynomial-time algorithm to solve it
- Decide the "right" approach to solve a problem

- Problem is a collection of instances that share a mathematical form but differ in size and in the values of numerical constants in the problem form (i.e. *generic model*).
 Example: shortest path.
- **Instance** is a special case of problem with specified data and parameters.
- An algorithm *solves* a problem if the algorithm is guaranteed to find the optimal solution for any instance.

Complexity Measures

- Empirical Analysis
 - see how algorithms perform in practice
 - write program, test on classes of problem instances
- Average Case Analysis (Expected Case Analysis)
 - determine expected number of steps
 - choose probability distribution for problem instances, use statistical analysis to derive asymptotic expected run times

- Worst Case Analysis
 - provides upper bound (UB) on the number of steps an algorithm can take on *any* instance
 - count largest possible number of steps
 - provides a "guarantee" on number of steps the algorithm will need

- CONs of Empirical Analysis
 - algorithm performance depends on computer language, compiler, hardware, programmer's skills
 - costly and time consuming to do
 - algorithm comparison can be inconclusive

- CONs of Average Case Analysis
 - depends heavily on choice of probability distribution
 - hard to pick the probability distribution of realistic problems
 - analysis often very complex
 - assumes analyst solving multiple problem instances

- Worst Case Analysis PROs
 - independent of computing environment
 - relatively easy
 - guarantee on steps (time)
 - definitive

CONs

- simplex method exception
- algorithm comparisons can be inconclusive

Big "O" Notation

- A theoretical measure of the execution of an algorithm given the problem size n.
- An algorithm is said to run in O(g(n)) time if f(n) = O(g(n)) (of order g(n)) and there are positive constants c and k, such that $0 \le f(n) \le cg(n)$ for all $n \ge k$ (i.e. the time taken by the algorithm is at most cg(n) for all $n \ge k$).

"f of n is big o of g of n"

Big "O" Notation (cont.)

- Usually interested in performance on large instances
- Only consider the dominant term Example: $100n + 1000n^2 + 0.01n^3$

 $\rightarrow O(n^3)$

Polynomial vs Exponential-Time Algorithms

- What is a "good" algorithm?
- It is commonly accepted that worst case performance bounded by a polynomial function of the problem parameters is "good". We call this a *Polynomial-Time Algorithm*. Example: O(n³)
- Strongly preferred because it can handle arbitrarily large data

Polynomial vs Exponential-Time Algorithms (cont.)

- In Exponential-Time Algorithms, worst case run time grows as a function that cannot be polynomially bounded by the input parameters.
 Example: O(2ⁿ) O(n!)
- Why is a polynomial-time algorithm better than an exponential-time one?
 - →Exponential time algorithms have an explosive growth rate.

Polynomial vs Exponential-					
Time Algorithms (cont.)					
	n=5	n=10	n=100	n=1000	
n	5	10	10 ²	10 ³	
n^2	25	100	104	106	
n ³	125	1000	106	109	
nlogn		10	2 x 10 ²	3 x 10 ³	
2 ⁿ	32	1024	1.27 x 10 ³⁰	1.07 x 10 ³⁰¹	
n!	120	3.6 x 10 ⁶	9.33 x 10 ¹⁵⁷	4.02 x 10 ²⁵⁶⁷	15

Optimization vs Decision Problems

Optimization Problem

A computational problem in which the object is to find the best of all possible solutions. (i.e. find a solution in the feasible region which has the minimum or maximum value of the objective function.)

• Decision Problem

A problem with a "yes" or "no" answer.

• Convert Optimization Problems into equivalent Decision Problems

What is the optimal value?

 \rightarrow Is there a feasible solution to the problem with an objective function value equal to or superior to a specified threshold?

Class P

- The class of decision problems for which we can find a solution in *polynomial* time.
 - i.e. **P** includes all decision problems for which there is an algorithm that halts with the correct yes/no answer in a number of steps bounded by a polynomial in the problem size n.
- The **Class P** in general is thought of as being composed of relatively "easy" problems for which efficient algorithms exist.

Examples of Class P Problems

- Shortest path
- Minimum spanning tree
- Network flow
- Transportation, assignment and transshipment
- Some single machine scheduling problems

Class NP

- **NP** = Nondeterministic Polynomial
- **NP** is the class of decision problems for which we can *check* solutions in polynomial time.

i.e. easy to verify but not necessarily easy to solve

Example: easy to verify the correctness of a mathematical proof but difficult to generate a mathematical proof

Class NP (cont.)

- Formally, it is the set of decision problems such that if x is a "yes" instance then this could be *verified* in *polynomial* time if a **clue** or **certificate** whose size is polynomial in the size of x is appended to the problem input.
 NP includes all those decision problems that could be polynomial-time solved if the right
 - (polynomial-length) clue is appended to the problem input.

Extra information so the correctness of an answer to a decision problem can be quickly checked.

Class NP (cont.)

• Given a hypothetical solution to a decision problem, if one can efficiently check that all constraints are met (i.e., feasible) & compute the objective function to compare with the bound, then the problem is in NP.

Example: composite number problem

Class P vs Class NP

- **Class P** contains all those that have been conquered with well-bounded, constructive algorithms.
- **Class NP** includes the decision problem versions of virtually all the widely studied combinatorial optimization problems.
- **P** is a subset of **NP**.

NP Hard vs NP Complete

When a decision version of a combinatorial optimization problem is proven to belong to the class of NP-Complete problems, an optimization version is NP-Hard.
 -NIST Dictionary of Algorithms

& Data Structure

NP Hard vs NP Complete (cont.)

- A problem is said to be *NP-Hard* if all members of NP *polynomially reduce* to this problem. → *NP-Hard* problems are at least as hard as or harder than any problem in *NP*.
- A problem is said to be *NP-Complete* if (a) it
 ? NP, and (b) it is *NP-Hard.* → *NP-Complete* problems are the hardest problems in *NP*.

- Cook's Theorem: If there is an efficient (i.e. polynomial) algorithm for some NP-Complete problem, then there is a polynomial algorithm existing for all problems in NP. → P = NP
- Examples of NP-Hard problems: TSP, graph coloring, set covering and partitioning, knapsack, precedence-constrained scheduling, etc.

Reference

• NIST Dictionary of Algorithms & Data Structure

http://www.nist.gov/dads/

 Comp. Theory FAQ http://db.uwaterloo.ca/~alopez-o/compfaq/faq.html

Polynomial(-time) Reduction

- A transformation of one problem into another which is computable in polynomial time.
- Problem **P** reduces in polynomial-time to another problem **P**′, if and only if,
 - there is an algorithm for problem \mathbf{P} which uses problem \mathbf{P}' as a subroutine,
 - each call to the subroutine of problem \mathbf{P}' counts as a single step,

- this algorithm for problem \mathbf{P}' runs in polynomial-time.

Polynomial(-time) Reduction (cont.)

- If problem P *polynomially reduces* to problem P' and there is a polynomial-time algorithm for problem P', then there is a polynomial-time algorithm for problem P.
 - → Problem P' is at least as hard as problem P! i.e., If P' can be used to solve instances of P,

then **P**' is at least as hard as or harder than **P**.

29