
1

IE 607 Heuristic Optimization

Introduction to Optimization
Part II

2

Steps:
• Design the algorithm
• Encode the algorithm

Steps of algorithm
Data structures

• Apply the algorithm

Algorithm Design & Analysis

3

• Run-time
• Memory requirements
• Number of elementary computer operations to

solve the problem in the worst case

Study increased in the 70’s

Algorithm Efficiency

4

• Seeks to classify problems in terms of the
mathematical order of the computational
resources required to solve the problems via
computer algorithms

• Judge a problem whether we can find a
polynomial-time algorithm to solve it

• Decide the “right” approach to solve a problem

Complexity Analysis

5

• Problem is a collection of instances that share
a mathematical form but differ in size and in
the values of numerical constants in the
problem form (i.e. generic model).
Example: shortest path.

• Instance is a special case of problem with
specified data and parameters.

• An algorithm solves a problem if the algorithm
is guaranteed to find the optimal solution for
any instance.

6

• Empirical Analysis
- see how algorithms perform in practice
- write program, test on classes of problem

instances
• Average Case Analysis (Expected Case Analysis)

- determine expected number of steps
- choose probability distribution for problem

instances, use statistical analysis to derive
asymptotic expected run times

Complexity Measures

7

• Worst Case Analysis
- provides upper bound (UB) on the

number of steps an algorithm can take on
any instance

- count largest possible number of steps
- provides a “guarantee” on number of

steps the algorithm will need

Complexity Measures (cont.)

8

• CONs of Empirical Analysis
- algorithm performance depends on

computer language, compiler, hardware,
programmer’s skills

- costly and time consuming to do
- algorithm comparison can be inconclusive

Complexity Measures (cont.)

9

• CONs of Average Case Analysis
- depends heavily on choice of probability

distribution
- hard to pick the probability distribution of

realistic problems
- analysis often very complex
- assumes analyst solving multiple problem

instances

Complexity Measures (cont.)

10

• Worst Case Analysis
PROs
- independent of computing environment
- relatively easy
- guarantee on steps (time)
- definitive
CONs
- simplex method exception
- algorithm comparisons can be inconclusive

Complexity Measures (cont.)

11

• A theoretical measure of the execution of an
algorithm given the problem size n.

• An algorithm is said to run in O(g(n)) time if
f(n) = O(g(n)) (of order g(n)) and there are
positive constants c and k, such that

for all (i.e. the time
taken by the algorithm is at most cg(n) for all

).

Big “O” Notation

)()(0 ncgnf ≤≤ kn ≥

kn ≥

“f of n is big o of g of n”

12

• Usually interested in performance on large
instances

• Only consider the dominant term
Example:

à

Big “O” Notation (cont.)

32 01.01000100 nnn ++

)(3nO

13

• What is a “good” algorithm?
• It is commonly accepted that worst case

performance bounded by a polynomial
function of the problem parameters is “good”.
We call this a Polynomial-Time Algorithm.
Example:

• Strongly preferred because it can handle
arbitrarily large data

Polynomial vs Exponential-
Time Algorithms

)(3nO

14

• In Exponential-Time Algorithms, worst case
run time grows as a function that cannot be
polynomially bounded by the input parameters.
Example:

• Why is a polynomial-time algorithm better
than an exponential-time one?
àExponential time algorithms have an

explosive growth rate.

Polynomial vs Exponential-
Time Algorithms (cont.)

)2(nO)!(nO

15

n=5 n=10 n=100 n=1000
n 5 10 102 103

n2 25 100 104 106

n3 125 1000 106 109

nlogn 10 2 x 102 3 x 103

2n 32 1024 1.27 x 1030 1.07 x 10301

n! 120 3.6 x 106 9.33 x 10157 4.02 x 102567

Polynomial vs Exponential-
Time Algorithms (cont.)

16

• Optimization Problem
A computational problem in which the object
is to find the best of all possible solutions. (i.e.
find a solution in the feasible region which has
the minimum or maximum value of the
objective function.)

• Decision Problem
A problem with a “yes” or “no” answer.

Optimization vs Decision
Problems

17

• Convert Optimization Problems into
equivalent Decision Problems

What is the optimal value?
àIs there a feasible solution to the problem
with an objective function value equal to or
superior to a specified threshold?

18

• The class of decision problems for which we
can find a solution in polynomial time.
i.e. P includes all decision problems for which
there is an algorithm that halts with the correct
yes/no answer in a number of steps bounded
by a polynomial in the problem size n.

• The Class P in general is thought of as being
composed of relatively “easy” problems for
which efficient algorithms exist.

Class P

19

• Shortest path
• Minimum spanning tree
• Network flow
• Transportation, assignment and transshipment
• Some single machine scheduling problems

Examples of Class P Problems

20

• NP = Nondeterministic Polynomial
• NP is the class of decision problems for which

we can check solutions in polynomial time.
i.e. easy to verify but not necessarily easy to
solve
Example: easy to verify the correctness of a
mathematical proof but difficult to generate a
mathematical proof

Class NP

21

• Formally, it is the set of decision problems
such that if x is a “yes” instance then this could
be verified in polynomial time if a clue or
certificate whose size is polynomial in the size
of x is appended to the problem input.

• NP includes all those decision problems that
could be polynomial-time solved if the right
(polynomial-length) clue is appended to the
problem input.

Class NP (cont.)

Extra information so the correctness of an answer
to a decision problem can be quickly checked.

22

• Given a hypothetical solution to a decision
problem, if one can efficiently check that all
constraints are met (i.e., feasible) & compute
the objective function to compare with the
bound, then the problem is in NP.
Example: composite number problem

Class NP (cont.)

23

• Class P contains all those that have been
conquered with well-bounded, constructive
algorithms.

• Class NP includes the decision problem
versions of virtually all the widely studied
combinatorial optimization problems.

• P is a subset of NP.

Class P vs Class NP

24

• When a decision version of a combinatorial
optimization problem is proven to belong to
the class of NP-Complete problems, an
optimization version is NP-Hard.

-NIST Dictionary of Algorithms
& Data Structure

NP Hard vs NP Complete

25

• A problem is said to be NP-Hard if all
members of NP polynomially reduce to this
problem.à NP-Hard problems are at least as
hard as or harder than any problem in NP.

• A problem is said to be NP-Complete if (a) it
? NP, and (b) it is NP-Hard.à NP-Complete
problems are the hardest problems in NP.

NP Hard vs NP Complete (cont.)

P

NP NP-
Hard

NP Complete

26

• Cook’s Theorem: If there is an efficient (i.e.
polynomial) algorithm for some NP-Complete
problem, then there is a polynomial algorithm
existing for all problems in NP.à P = NP

• Examples of NP-Hard problems:
TSP, graph coloring, set covering and
partitioning, knapsack, precedence-constrained
scheduling, etc.

27

• NIST Dictionary of Algorithms & Data
Structure
http://www.nist.gov/dads/

• Comp. Theory FAQ
http://db.uwaterloo.ca/~alopez-o/comp-
faq/faq.html

Reference

28

• A transformation of one problem into another
which is computable in polynomial time.

• Problem P reduces in polynomial-time to
another problem P ,́ if and only if,
- there is an algorithm for problem P which
uses problem P´as a subroutine,
- each call to the subroutine of problem P´
counts as a single step,
- this algorithm for problem P´runs in
polynomial-time.

Polynomial(-time) Reduction

29

• If problem P polynomially reduces to problem
P´and there is a polynomial-time algorithm
for problem P ,́ then there is a polynomial-time
algorithm for problem P.
àProblem P´is at least as hard as problem P!

i.e., If P´can be used to solve instances of P,
then P´is at least as hard as or harder than P.

Polynomial(-time) Reduction (cont.)

P P´
easyßeasy
hardàhard

