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IE 607 Heuristic Optimization

Introduction to Optimization
Part II
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Steps:
• Design the algorithm
• Encode the algorithm

Steps of algorithm
Data structures

• Apply the algorithm

Algorithm Design & Analysis
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• Run-time
• Memory requirements
• Number of elementary computer operations to 

solve the problem in the worst case

Study increased in the 70’s

Algorithm Efficiency
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• Seeks to classify problems in terms of the 
mathematical order of the computational 
resources required to solve the problems via 
computer algorithms

• Judge a problem whether we can find a 
polynomial-time algorithm to solve it

• Decide the “right” approach to solve a problem

Complexity Analysis



5

• Problem is a collection of instances that share 
a mathematical form but differ in size and in 
the values of numerical constants in the 
problem form (i.e. generic model). 
Example: shortest path.

• Instance is a special case of problem with 
specified data and parameters.

• An algorithm solves a problem if the algorithm 
is guaranteed to find the optimal solution for 
any instance.
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• Empirical Analysis
- see how algorithms perform in practice
- write program, test on classes of problem 

instances
• Average Case Analysis (Expected Case Analysis)

- determine expected number of steps
- choose probability distribution for problem 

instances, use statistical analysis to derive 
asymptotic expected run times

Complexity Measures
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• Worst Case Analysis
- provides upper bound (UB) on the 

number of steps an algorithm can take on 
any instance

- count largest possible number of steps
- provides a “guarantee” on number of 

steps the algorithm will need

Complexity Measures (cont.)
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• CONs of Empirical Analysis
- algorithm performance depends on 

computer language, compiler, hardware, 
programmer’s skills

- costly and time consuming to do
- algorithm comparison can be inconclusive

Complexity Measures (cont.)
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• CONs of Average Case Analysis
- depends heavily on choice of probability 

distribution
- hard to pick the probability distribution of 

realistic problems
- analysis often very complex
- assumes analyst solving multiple problem 

instances

Complexity Measures (cont.)
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• Worst Case Analysis
PROs
- independent of computing environment
- relatively easy
- guarantee on steps (time)
- definitive
CONs
- simplex method exception
- algorithm comparisons can be inconclusive

Complexity Measures (cont.)
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• A theoretical measure of the execution of an 
algorithm given the problem size n.

• An algorithm is said to run in O(g(n)) time if 
f(n) = O(g(n)) (of order g(n)) and there are 
positive constants c and k, such that 

for all (i.e. the time 
taken by the algorithm is at most cg(n) for all

).

Big “O” Notation

)()(0 ncgnf ≤≤ kn ≥

kn ≥

“f of n is big o of g of n”
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• Usually interested in performance on large 
instances

• Only consider the dominant term
Example: 

à

Big “O” Notation (cont.)

32 01.01000100 nnn ++

)( 3nO
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• What is a “good” algorithm?
• It is commonly accepted that worst case 

performance bounded by a polynomial 
function of the problem parameters is “good”. 
We call this a Polynomial-Time Algorithm.
Example:

• Strongly preferred because it can handle 
arbitrarily large data

Polynomial vs Exponential-
Time Algorithms

)( 3nO
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• In Exponential-Time Algorithms, worst case 
run time grows as a function that cannot be 
polynomially bounded by the input parameters. 
Example: 

• Why is a polynomial-time algorithm better 
than an exponential-time one?
àExponential time algorithms have an

explosive growth rate.

Polynomial vs Exponential-
Time Algorithms (cont.)

)2( nO )!(nO
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n=5 n=10 n=100 n=1000
n 5 10 102 103

n2 25 100 104 106

n3 125 1000 106 109

nlogn 10 2 x 102 3 x 103

2n 32 1024 1.27 x 1030 1.07 x 10301

n! 120 3.6 x 106 9.33 x 10157 4.02 x 102567

Polynomial vs Exponential-
Time Algorithms (cont.)
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• Optimization Problem
A computational problem in which the object 
is to find the best of all possible solutions. (i.e. 
find a solution in the feasible region which has 
the minimum or maximum value of the 
objective function.)

• Decision Problem
A problem with a “yes” or “no” answer. 

Optimization vs Decision 
Problems
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• Convert Optimization Problems into 
equivalent Decision Problems

What is the optimal value?
àIs there a feasible solution to the problem 
with an objective function value equal to or 
superior to a specified threshold?
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• The class of decision problems for which we 
can find a solution in polynomial time.
i.e. P includes all decision problems for which 
there is an algorithm that halts with the correct 
yes/no answer in a number of steps bounded 
by a polynomial in the problem size n.

• The Class P in general is thought of as being 
composed of relatively “easy” problems for 
which efficient algorithms exist. 

Class P
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• Shortest path
• Minimum spanning tree
• Network flow
• Transportation, assignment and transshipment
• Some single machine scheduling problems

Examples of Class P Problems
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• NP = Nondeterministic Polynomial
• NP is the class of decision problems for which 

we can check solutions in polynomial time. 
i.e. easy to verify but not necessarily easy to 
solve
Example: easy to verify the correctness of a 
mathematical proof but difficult to generate a 
mathematical proof

Class NP
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• Formally, it is the set of decision problems 
such that if x is a “yes” instance then this could 
be verified in polynomial time if a clue or 
certificate whose size is polynomial in the size 
of x is appended to the problem input.

• NP includes all those decision problems that 
could be polynomial-time solved if the right 
(polynomial-length) clue is appended to the 
problem input.

Class NP (cont.)

Extra information so the correctness of an answer
to a decision problem can be quickly checked.
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• Given a hypothetical solution to a decision 
problem, if one can efficiently check that all 
constraints are met (i.e., feasible) & compute 
the objective function to compare with the 
bound, then the problem is in NP.
Example: composite number problem

Class NP (cont.)
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• Class P contains all those that have been 
conquered with well-bounded, constructive 
algorithms.

• Class NP includes the decision problem 
versions of virtually all the widely studied 
combinatorial optimization problems.

• P is a subset of NP.

Class P vs Class NP
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• When a decision version of a combinatorial 
optimization problem is proven to belong to 
the class of NP-Complete problems, an 
optimization version is NP-Hard.

-NIST Dictionary of Algorithms 
& Data Structure

NP Hard vs NP Complete
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• A problem is said to be NP-Hard if all 
members of NP polynomially reduce to this 
problem.à NP-Hard problems are at least as 
hard as or harder than any problem in NP. 

• A problem is said to be NP-Complete if (a) it 
? NP, and (b) it is NP-Hard.à NP-Complete
problems are the hardest problems in NP.

NP Hard vs NP Complete (cont.)

P

NP NP-
Hard

NP Complete
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• Cook’s Theorem: If there is an efficient (i.e. 
polynomial) algorithm for some NP-Complete
problem, then there is a polynomial algorithm 
existing for all problems in NP.à P = NP

• Examples of NP-Hard problems:
TSP, graph coloring, set covering and 
partitioning, knapsack, precedence-constrained 
scheduling, etc.
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• NIST Dictionary of Algorithms & Data 
Structure 
http://www.nist.gov/dads/

• Comp. Theory FAQ 
http://db.uwaterloo.ca/~alopez-o/comp-
faq/faq.html

Reference
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• A transformation of one problem into another 
which is computable in polynomial time.

• Problem P reduces in polynomial-time to 
another problem P ,́ if and only if, 
- there is an algorithm for problem P which 
uses problem P´as a subroutine, 
- each call to the subroutine of problem P´
counts as a single step,
- this algorithm for problem P´runs in 
polynomial-time.

Polynomial(-time) Reduction
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• If problem P polynomially reduces to problem 
P´and there is a polynomial-time algorithm 
for problem P ,́ then there is a polynomial-time 
algorithm for problem P. 
àProblem P´is at least as hard as problem P!

i.e., If P´can be used to solve instances of P,
then P´is at least as hard as or harder than P.

Polynomial(-time) Reduction (cont.)

P P´
easyßeasy
hardàhard


