
PENALTY GUIDED GENETIC SEARCH FOR RELIABILITY DESIGN

OPTIMIZATION

David W. Coit and Alice E. Smith1

Department of Industrial Engineering
University of Pittsburgh

1048 Benedum Hall
Pittsburgh, PA 15261

aesmith@engrng.pitt.edu

Accepted to Computers and Industrial Engineering, Special Issue on Genetic Algorithms,

Volume 30, Number 4, 1996

1 Corresponding author.

1

Penalty Guided Genetic Search for Reliability Design Optimization

Abstract

Reliability optimization has been studied in the literature for decades, usually
using a mathematical programming approach. Because of these solution
methodologies, restrictions on the type of allowable design have been made,
however heuristic optimization approaches are free of such binding restrictions.
One difficulty in applying heuristic approaches to reliability design is the highly
constrained nature of the problems, both in terms of number of constraints and
the difficulty of satisfying constraints. This paper presents a penalty guided
genetic algorithm which efficiently and effectively searches over promising
feasible and infeasible regions to identify a final, feasible optimal, or near
optimal, solution. The penalty function is adaptive and responds to the search
history. Results obtained on 33 test problems from the literature dominate
previous solution techniques.

1. Introduction to the Redundancy Allocation Problem of Reliability Design

Development of new system designs involves the selection of components and

configurations to satisfy detailed functional and performance specifications. For systems

designed using off-the-shelf components, with known cost, reliability, weight and other

attributes, system design can be formulated as a combinatorial optimization problem. The best

known reliability design problem of this type is the redundancy allocation problem, where either

system reliability is maximized or system cost is minimized. Both formulations generally

involve system level constraints on allowable weight, power, cost, space and/or minimum

system reliability level.

The overall system is partitioned into a specific number of subsystems, s, based on the

system’s required functions. For each required function, there are different component types

available with varying costs, reliabilities, weights and other characteristics. It is often

advantageous or even required to use components in parallel for a particular subsystem because

of the required subsystem function (i.e., a minimum number of working components, k, is

needed for the subsystem to function) or the need to increase system reliability. The redundancy

2

allocation problem is to select the best combination of components and levels of redundancy to

collectively meet reliability and other constraints at a minimum cost, or alternatively, to

maximize reliability given cost and other constraints. The most studied design configuration of

the redundancy allocation problem is the series-parallel system, such as depicted in Figure 1.

This is because many systems can be appropriately represented as series-parallel and because a

series-parallel design can often serve as a bound for other types of system configurations.

INSERT FIGURE 1 HERE

If ki represents the minimum number of components required for subsystem i to function

and is specified for each subsystem, and there are constraints for maximum system cost and

weight, the maximizing system reliability problem is:

max ()R ki i i
i

s

x
=

∏
1

subject to C Ci i
i

s

()x
=

∑ ≤
1

W Wi i
i

s

()x
=

∑ ≤
1

k x n i si ij i
j

mi

≤ ≤ ∀ =
=

∑ max, , ,...,
1

1 2

xij ∈ (0, 1, 2, ...)

where,

C = cost constraint
W = weight constraint
s = number of subsystems
xi = (xi1, xi2, ..., xi,mi)
xij = number of the j th component used in subsystem i
ni = total number of components used in subsystem i

= xi1 + xi2 + ... + xi,mi

nmax,i = maximum number of components used in subsystem i (specified)
Ri(xi|ki)= reliability of subsystem i, given ki

Ci(xi) = total cost of subsystem i
Wi(xi) = total weight of subsystem i

3

Since the 1960s the series-parallel redundancy allocation has been studied with a variety

of approaches; first by the seminal work using dynamic programming of Fyffe et al [10]. The

dynamic programming approach suffered from inefficiencies and non-convergence, and was

improved upon using integer programming techniques by other researchers including Ghare and

Taylor [12], Bulfin and Liu [4] and Misra and Sharma [19]. An improved dynamic

programming technique was developed by Nakagawa and Miyazaki [20]. A similar problem

was formulated as a nonlinear optimization problem with component reliability and/or other

constraints/objectives as continuous variables (see for example, Tillman et al. [16, 31, 33]). The

mathematical programming approaches, while assuring optimality if convergence occurs, can

only solve the redundancy allocation problem by imposing restrictions on the allowable

configurations. These restrictions are setting k equal to 1 and/or allowing only one component

type to be selected per subsystem, although replicates of this component may be used in parallel.

More recently, there has been interest in applying the newer heuristic techniques such as

genetic algorithms (GA) and simulated annealing to reliability design. The use of genetic

algorithms to solve reliability design problems is described by Painton and Campbell [22, 23],

Ida et al. [17] and Coit and Smith [5-7]. Painton and Campbell solved two small design

problems while considering the probabilistic aspects of reliability (i.e., component failure rate

was regarded as a random variable rather than a fixed value). Ida et al. solved a series-parallel

problem with multiple failure modes and compared this to their earlier research which solved the

same problem using mathematical programming. Coit and Smith have pursued work related to

this paper, which has centered on removing the restrictions on design required by mathematical

programming, and solving the redundancy allocation problem to optimality using a dynamic, but

not adaptive, penalty function.

4

This paper centers on solving highly constrained reliability design problems with genetic

search by focusing on a penalty function approach. All realistic formulations of the redundancy

allocation problem are constrained and often highly constrained. There are certain aspects of

genetic algorithms, which are discussed below, which make handling of constraints particularly

difficult. After describing the difficulties of using GAs for constrained problems, previous

penalty approaches are discussed. The adaptive penalty approach developed in this research is

then presented and its effectiveness is demonstrated on 33 test problems from the literature.

2. Genetic Algorithms and Constrained Optimization

Genetic algorithms produce new (child) solutions by recombining the encoded solutions of

existing solutions (parents) from a population, and by mutating the child solutions. The central

idea is that superior parent solutions will tend to produce superior child solutions, so that

eventually an optimal solution is obtained. Mutation is used to prevent convergence to local

optima. Because the GA works by recombining and altering solutions, maintaining feasibility is

difficult for many problems. Even with two feasible parents, crossover can yield infeasible

children. This especially arises in combinatorial optimization where the encoding is often times

something other than the traditional bit string.

One solution to preserving feasibility of children is to increase the complexity of the

crossover and mutation operators, so that they are guaranteed to produce feasible encodings [27],

so called “repair operators.” However, many optimization problems, including the redundancy

allocation problem, involve constraints for which it is not useful to modify a nearly-feasible

solution to make it feasible. Repair operations will either disrupt schema (building blocks of

superior solutions) excessively or incur undue computational overhead, or both. In fact, in many

cases the problem of finding any feasible solution is itself NP-hard [11] including the problem of

minimizing cost given a minimum allowable reliability and a maximum weight constraint. The

most generic solution approach to such situations is using exterior penalty methods.

5

In general, a penalty function approach is as follows. Given an optimization problem,

min z(x) (P)

s.t. x ∈ A

x ∈ B

where x is a vector of decision variables, the constraints “x ∈ A” are relatively easy to satisfy,

and the constraints “x ∈ B” are relatively hard to satisfy, the problem can be reformulated as

min z(x) + p(d(x, B)) (R)

s.t. x ∈ A

where d(x, B) is a metric function describing the distance of the vector x from the region B, and

p(⋅) is a penalty function such that p(0) = 0. This is an exterior penalty function defined such

that if the function p(⋅) grows quickly enough outside of B, the optimal solution of (P) will also

be optimal for (R). Furthermore, any optimal solution of (R) will provide an upper bound on the

optimum for (P), and this bound will in general be tighter than that obtained by simply

optimizing ψ(x) over A. In the area of combinatorial optimization, Lagrangian relaxation [1, 9,

25] is one such penalty method.

Many penalty functions have been implemented in GA optimization with several major

approaches emerging. The most fundamental is eliminating any infeasible solution from

consideration immediately, the so called “death penalty”. Another approach is based on the

number of constraints violated, so that the penalty for a specific number of constraint violations

is constant regardless of the magnitude of the violations. A third, more effective, approach uses

a distance metric of the infeasible solution from the feasible region [2, 13, 15, 21, 26].

A variation of distance based penalty functions also incorporates a dynamic aspect which

increases the severity of the penalty for a given distance as the search progresses. This is most

commonly done by increasing the penalty with each generation. This allows more infeasible

solutions with attractive schema early in the search, while eventually moving the final solution

to the feasible region. Uses of this approach include Joines and Houck [18], Petridis and Kazarlis

6

[24] and Coit and Smith [5]. While these penalty functions are dynamic, they do not respond to

the search history except to monotonically increase with generation number.

A few researchers have proposed making use of search information in an adaptive way to

formulate robust and effective penalty functions. Siedlecki and Sklansky’s [27] method is

restricted to binary-string encodings with a single constraint, and involves considerable

computational overhead. Bean and Hadj-Alouane [3, 14] use penalty functions which are altered

based on the feasibility or infeasibility of the best, penalized solution during recent generations.

Their penalty function allows both increase and decrease of the penalty during the search and

was demonstrated on multiple choice integer programming problems with one constraint. Smith

and Tate [28, 30] used both the number of generations and the characteristics of the best found

solution so far in their penalty function. Their work was confined to a single, discrete constraint,

however it provided the basis for the approach used in this paper. More generic information

about GAs and penalty functions, and a general form of an adaptive penalty approach can be

found in Coit et al. [8].

3. Adaptive Penalty for Combinatorial Reliability Design

The penalty function used here introduces the notion of a “near-feasibility threshold” (NFT)

for each constraint. Exterior penalty functions are usually characterized as being nondecreasing

functions of the distance of a solution from the feasible region. Conceptually, the NFT is the

threshold distance from the feasible region which is considered as being close to feasibility.

Often this can be selected based on the practical implications of a constraint violation. The

penalty function will encourage the GA to explore the feasible region and the NFT-infeasible

region, and discourage, but permit, search further into the infeasible region.

The penalty function used to solve the redundancy allocation problem where reliability was

maximized is presented as Equation 1. The penalty learns to adapt itself based on the severity of

the constraints of a particular problem instance. An adaptive term, (Vall - Vfeas) in Equation 1

calculates the difference between the non-penalized solution value of the best solution yet found

(which will probably be infeasible) and the value of the best feasible solution yet found.

7

V V
w

NFT

c

NFT
V V

ip i

i i

all feas

w c

= −






 +



















 −∆ ∆

κ κ

() (1)

Vip is the penalized objective function value of solution i, Vi is the unpenalized objective

function value for solution i, Vall denotes the unpenalized value of the best solution yet found,

and Vfeas denotes the value of the best feasible solution yet found. The exponent κ is a pre-set

severity parameter. Previous work had demonstrated substantial robustness to values of κ [8,

28] and it was set to 2 for the work presented throughout this paper. NFTc and NFTw are the

“Near-Feasible Thresholds” for the cost and weight constraints respectively, and ∆wi and ∆ci

represent the magnitude of any constraint violations for the i th solution vector.

There are two aspects of Equation 1 which need more explanation. First, if the objective

function of the best feasible solution in the population is better than the unpenalized objective

function of the best infeasible solution, then the (Vall - Vfeas) term is zero. Any subsequent

infeasible solution with an unpenalized objective function inferior to the best feasible solution

will not have a penalty imposed. Conceptually, this would often imply the best unpenalized

solution is likely to be in the interior of the feasible region (i.e., no tight constraints). However,

in practice for coherent systems, this is an unlikely occurrence. When maximizing system

reliability, when cost and/or weight constraints are violated by adding additional redundant

components, it is unlikely that the system reliability will be inferior to a feasible solutions.

A second consideration is when, early in the search, a best infeasible solution is so

dramatically infeasible that Vall is much different from Vfeas and the penalty may then be too

severe for the remainder of the search. In practice this has not been observed, primarily because

of initial population selection strategies which largely preclude the possibility of selecting

solution vectors sufficiently far from the feasible region for this to happen. If in fact, this

becomes a problem for a specific problem instance, then it can be alleviated by determining new

values for Vall and Vfeas after an initial “burn-in” period.

8

Determination of suitable values for NFT requires further discussion. Given a specific

problem and constraint set (C, W), the extent to which the infeasible region should be thoroughly

explored may not be intuitive (although NFT can often be selected based on the practical

implications of a constraint violation). Effective values of NFT could be found through iterative

experimentation for any particular redundancy allocation problem, however, this is clearly

undesirable. This paper fully investigates the sensitivity of the adaptive penalty approach to

NFT by using different rules including a dynamic NFT which monotonically decreases during

the search.

The dynamic NFT is defined as follows,

NFT
NFT

g
=

+
o

1 λ (2)

where NFTo is an upper bound or starting point for NFT, g is the generation number, and λ is a

constant which assures that the entire region between NFTo and zero (strict feasibility) is

searched. The only restrictions on selecting λ is that the NFT not approach zero either too

quickly or too slowly.

4. Genetic Algorithm for Redundancy Allocation

The solution encoding, evolution parameters and genetic operators are as described in

Coit and Smith [5], an earlier work with the redundancy allocation problem. However, this

paper uses a more robust, adaptive penalty function which reduces the number of user set and

problem specific parameters. The fundamental operations of the GA are summarized here.

Each possible solution to the redundancy allocation problem is a collection of ni components in

parallel (ki ≤ ni ≤ nmax,i) for s different subsystems. The ni components can be chosen in any

combination from among mi available components. The mi components are indexed in

descending order according to their reliability so that 1 represents the most reliable. The

solution encoding is an integer vector representation with ΣΣ nmax,i positions. Each of the s

subsystems are represented by nmax,i positions with each component listed according to their

reliability index. An index of mi + 1 is assigned to a position where an additional component

9

was not used (i.e., ni < nmax,i). The subsystem representations are then concatenated to complete

the vector representation. As an example, consider a system with s = 2, m1 = 4, m2 = 6, and nmax,i

predetermined to be 6 for both i. The following example,

v = (1 2 2 5 5 5 | 3 3 3 5 5 7)

represents a prospective solution with one of the most reliable components and two of the second

most reliable component used in parallel for the first subsystem; and three of the third most

reliable and two of the fifth most reliable component used in parallel for the second subsystem.

The initial population was determined by randomly selecting s integers between ki and

nmax,i to represent the number of components in parallel (ni) for each solution subsystem. Then, ni

components were randomly and uniformly selected from among the mi available components,

assuming an adequate supply available of each type. The components were then sequenced in

accordance with their reliability. Previous experimentation [5] indicated that a population size

of 40 was appropriate for the test problems studied.

The crossover operator used was uniform crossover where common components of the

parents were retained in the child and non-common components were selected with equal

probability from either parent. Parents were probabilistically selected based on a quadratic

relationship to their ordinal ranking as in Tate and Smith [29, 30]. This method is

computationally efficient because the ordinal rank is the only information used in parent

selection. Also, it preserves selection pressure, which is a hallmark of GA, but avoids premature

convergence to local optima when one solution is far better than any others, as might occur using

a selection method based on objective function value rather than rank. For a solution vector

chosen for mutation, each integer value is changed with probability equal to a pre-selected

mutation rate. If selected to be mutated, it is changed to an index of mi + 1 with 50 % probability

(to no component) and to a randomly chosen component, from among the mi choices, with 50 %

probability. All mutated solutions are maintained within the population for at least one

generation to assure that they have the opportunity to breed.

10

After crossover, the p best solutions from the current generation and the new child

solutions were combined to form the next generation. Mutation was then performed after

deleting inferior solutions from the population. The best solution within the population was

never chosen for mutation to assure that it was never altered and to improve the rate of

convergence (an elitist strategy).

5. Test Problems and Results

5.1. Test Problems

The test problems studied are the original problem posed by Fyffe, Hines and Lee [10]

and the 33 problem variations from Nakagawa and Miyazaki [20]. The objective is to maximize

reliability for a system with 14 subsystems and three or four component choices for each

subsystem, where k = 1 for all subsystems. The size of the search space is larger than 7.6 x 1033

(with component mixing). For each component alternative, there is a specified reliability, cost

and weight. In the original problem, there is a cost constraint of 130 and the weight constraint is

170. In the 33 problem variations, the cost constraint is maintained at 130 and the weight

constraint decreases incrementally from 191 to 159, which increases the severity of the

constraint.

Fyffe, Hines and Lee [10] used a dynamic programming approach with a Lagrangian

multiplier to accommodate the weight constraint within the objective function. However,

Nakagawa and Miyazaki [20] showed that Lagrangian multipliers are often inefficient and they

used a surrogate constraint approach combining the cost and weight constraints into a single

constraint, which must be iteratively altered with different surrogate multipliers. In both papers,

the approaches required that only identical components could be placed in redundancy.

Therefore, the optimal solution found pertains to a restricted search space, and a better solution

might be identified by allowing different, yet functionally similar, component types to reside in

parallel.

5.2. Computational Results

11

The 33 problems variations were solved with different NFT criteria including three levels

of constant NFT (5%, 3% and 1% of each constraint), a dynamic NFT and a GA that allowed

only feasible solutions (the “death penalty”). This allowed comparisons between a commonly

used approach (discarding infeasible solutions) with several possible versions of the adaptive

penalty function. The constant NFT versions had only an adaptive aspect where the dynamic

NFT version used both an adaptive term and a dynamic term which increased the penalty with

the number of generations, another common penalty formulation. For the decreasing NFT

implementation in this paper, λ was set to 0.04 for both cost and weight, and NFTco was set to

100 and NFTwo was set to W/1.3. Ten different random number seeds were used for each of the

33 problem variations and NFT criteria, resulting in a total of 1650 GA runs.

Figure 2 shows the system reliability of the best feasible solution of the ten runs for each

of the 33 problems as a ratio to the system reliability of the original solutions of Nakagawa and

Miyazaki. The Nakagawa and Miyazaki solutions were used as a reference, however, it should

be noted that (1) their algorithm did not converge to a feasible solution in several instances and

the reference value used is not actually a viable solution, and (2) a strict comparison of their

results and those presented here is unfair because different solution spaces were considered.

It can be seen in Figure 2 that as the problem grows more constrained the dynamic NFT

becomes more dominant in finding good feasible solutions. Of the constant NFTs, the 1% is

clearly inferior and produces feasible, but suboptimal, solutions. Apparently a small NFT

promotes exploration of the feasible region but does not properly encourage exploration of the

boundary region between feasibility and infeasibility. The strategy of allowing only feasible

solutions is also poor by finding even more suboptimal, though feasible, solutions. For

constrained problems, the optimum solution will lie on the boundary of at least one of the

constraints. This serves as further empirical evidence that the preferred approach to find the

optimal solution is to approach it through the infeasible region.

Although the dynamic NFT did not strictly dominate all other alternatives, comparative

statistical analysis confirmed its general superiority. A paired t-test comparing the dynamic NFT

12

with each of the other strategies (constant NFT and death penalty) yielded t values ranging from

4.13 (5% of constraint) to 13.88 (death penalty), with corresponding p values of 0.0002 to

<0.00005. It is also important to note that the superiority of the dynamic NFT increases as the

severity of the constraints increases, i.e. from problem 1 to 33.

INSERT FIGURE 2 HERE

Since GA is a stochastic search algorithm, another aspect of comparing solutions is the

sensitivity of the optimization procedure to the random number seed used. A robust

optimization procedure will exhibit low sensitivity to random number seed as evidenced by the

variance of the best solution found during the search. Figure 3 shows the standard deviation of

the best feasible solution to each problem for each penalty strategy. It can be seen that as the

problem grows more constrained, the difficulty in finding a good, feasible solution increases and

the search becomes more sensitive to initial seed. The dynamic NFT has low standard deviation

regardless of the extent of the constraints (i.e., size of the feasible region) where all the other

strategies incur greater standard deviation as the problem becomes harder. Especially the

strategies of the 1% static NFT and the death penalty are susceptible to greater variance in the

final best feasible solution. The robustness of the dynamic NFT to degree of problem constraint

and to random number seed is particularly encouraging.

INSERT FIGURE 3 HERE

Numerical summary results are presented in Table 1 and more detailed results are

presented in the Appendix. For each table, the results are pooled from the 33 different problems,

that is 330 different GA runs were made for each penalty strategy considered. The results show

for each of the five NFT alternatives, the proportion of trials where the GA’s best solution was

feasible. Additionally, the table presents the system reliability of the best of the 10 runs and the

mean of the 10 runs averaged over all 33 problems. The results from this problem indicate that

use of the adaptive penalty function (with any of the NFT criteria) is preferable to considering

only feasible solutions. Another important result is the comparisons of different NFT criteria. If

the NFT was large (5%), the GA often found good feasible solutions but ultimately converged to

13

an infeasible solution in greater than 98% of the trials. Conversely, if the NFT was small (1%),

the GA converged to a feasible solution in all cases, but the solution quality was poor. An

intermediate NFT value (3%) was able to balance both the benefits and deficiencies but is still

inferior to the dynamic NFT considering all aspects.

INSERT TABLE 1 HERE

The configuration of the best solution and its reliability, cost and weight for each of the

33 problems are shown in the Appendix. Note that most of the solutions involve mixing of

components, which indicates that if mixing is an option, better solutions can be identified by not

restricting the search space to a single component type per subsystem.

6. Conclusions

Adaptive penalty-guided genetic search is promising as an optimization method for

solving reliability design. The investigations presented here for the redundancy allocation

problem show that this approach can be powerful and robust for problems with large search

spaces and difficult-to-satisfy constraints. For the dynamic NFT penalty function, the quality of

the solutions found does not seem to be particularly sensitive to the precise penalty parameters

used, the random number seed, the degree of constraint, or the particular problem instance, so

that no extensive tuning of the penalty function is necessary, especially when using the dynamic

NFT strategy.

The dynamic NFT was clearly superior to the strategy of allowing only feasible solutions

in the population and to the static NFTs. Superiority was in terms of both final feasible solution

quality, variance of final feasible solution quality and successful convergence to a final best

solution that was feasible. The superiority of the dynamic NFT increased as the problem became

harder (more constrained). Additionally, by having the NFT decrease throughout the infeasible

region during the search, it is not necessary to pre-select a specific NFT.

14

References

[1] M. Avriel, 1976, Nonlinear Programming: Analysis and Methods, Prentice Hall,
Englewood Cliffs, NJ.

[2] T. Baeck and S. Khuri, 1994, An Evolutionary Heuristic for the Maximum Independent Set
Problem, Proceedings of the First IEEE Conference on Evolutionary Computation,
531-535.

[3] J. C. Bean and A. B. Hadj-Alouane, 1993, A Dual Genetic Algorithm for Bounded Integer
Programs, University of Michigan Technical Report, to be published in R.A.I.R.O.-R.O.

[4] R. L. Bulfin and C. Y. Liu, 1985, Optimal Allocation of Redundant Components for Large
Systems, IEEE Transactions on Reliability R-34, 241-247.

[5] D. W. Coit and A. E. Smith, 1996, Reliability Optimization of Series-Parallel Systems
Using a Genetic Algorithm, IEEE Transactions on Reliability 45 no. 2, in print.

[6] D. W. Coit and A. E. Smith, 1994, Use of a Genetic Algorithm to Optimize a
Combinatorial Reliability Design Problem, Proceedings of the Third Industrial
Engineering Research Conference, 467-472.

[7] D. W. Coit and A. E. Smith, 1995, Optimization Approaches to the Redundancy Allocation
Problem for Series-Parallel Systems, Proceedings of the Fourth Industrial Engineering
Research Conference, 342-349.

[8] D. W. Coit, A. E. Smith and D. M. Tate, 1996, Adaptive Penalty Methods for Genetic
Optimization of Constrained Combinatorial Problems, INFORMS Journal on
Computing 8, no. 2, in print.

[9] M. L. Fisher, 1981, The Lagrangian Relaxation Method for Solving Integer Programming
Problems, Management Science 27, 1-18.

[10] D. E. Fyffe, W. W. Hines and N. K. Lee, 1968, System Reliability Allocation and a
Computational Algorithm, IEEE Transactions on Reliability R-17, 64-69.

[11] M. R. Garey and D. S. Johnson, 1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Co., San Francisco.

[12] P. M. Ghare and R. E. Taylor, 1969, Optimal Redundancy for Reliability in Series System,
Operations Research 17, 838-847.

[13] D. E. Goldberg, 1989, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA.

[14] A. B. Hadj-Alouane and J. C. Bean, 1993, A Genetic Algorithm for the Multiple-Choice
Integer Program, University of Michigan Technical Report 92-50, to be published in
Operations Research.

[15] W-C. Huang, C-Y. Kao and J-T. Horng, 1994, A Genetic Algorithm Approach for Set
Covering Problem, Proceedings of the First IEEE Conference on Evolutionary
Computation, 569-573.

15

[16] C. L. Hwang, F. A. Tillman and W. Kuo, 1979, Reliability Optimization by Generalized
Lagrangian-Function and Reduced-Gradient Methods, IEEE Transactions on Reliability
R-28, 316-319.

[17] K. Ida, M. Gen and T. Yokota, 1994, System Reliability Optimization with Several Failure
Modes by Genetic Algorithm, Proceedings of 16th International Conference on
Computers and Industrial Engineering, 349-352.

[18] J. A. Joines and C. R. Houck, 1994, On the Use of Non-stationary Penalty Functions to
Solve Nonlinear Constrained Optimization Problems with GA’s, Proceedings of the First
IEEE Conference on Evolutionary Computation, 579-584.

[19] K. B. Misra and U. Sharma, 1991, An Efficient Algorithm to Solve Integer Programming
Problems Arising in System Reliability Design, IEEE Transactions on Reliability R-40,
81-91.

[20] Y. Nakagawa and S. Miyazaki, 1981, Surrogate Constraints Algorithm for Reliability
Optimization Problems With Two Constraints, IEEE Transactions on Reliability R-30,
175-180.

[21] A. L. Olsen, 1994, Penalty Functions and the Knapsack Problem, Proceedings of the
First IEEE Conference on Evolutionary Computation, 554-558.

[22] L. Painton and J. Campbell, 1994, Identification of Components to Optimize Improvements
in System Reliability, Proceedings of the SRA PSAM-II Conference on System-based
Methods for the Design and Operation of Technological Systems and Processes, 10-15
- 10-20.

[23] L. Painton and J. Campbell, 1995, Genetic Algorithms in Optimization of System
Reliability, IEEE Transactions on Reliability 44, 172-178.

[24] V. Petridis and S. Kazarlis, 1994, Varying Quality Function in Genetic Algorithms and the
Cutting Problem, Proceedings of the First IEEE Conference on Evolutionary
Computation, 166-169.

[25] C. R. Reeves, 1993, Modern Heuristic Techniques for Combinatorial Problems, John
Wiley & Sons, New York, NY.

[26] J. T. Richardson, M. R. Palmer, G. Liepins and M. Hilliard, 1989, Some Guidelines for
Genetic Algorithms with Penalty Functions, Proceedings of the Third International
Conference on Genetic Algorithms, 191-197.

[27] W. Siedlecki and J. Sklansky, 1989, Constrained Genetic Optimization via Dynamic
Reward-Penalty Balancing and Its Use in Pattern Recognition, Proceedings of the Third
International Conference on Genetic Algorithms, 141-150.

[28] A. E. Smith and D. M. Tate, 1993, Genetic Optimization Using a Penalty Function,
Proceedings of the Fifth International Conference on Genetic Algorithms, 499-505.

[29] D. M. Tate and A. E. Smith, 1995, A Genetic Approach to the Quadratic Assignment
Problem, Computers and Operations Research 22, 73-83.

16

[30] D. M. Tate and A. E. Smith, 1995, Unequal Area Facility Layout Using Genetic Search,
IIE Transactions 27, 465-472.

[31] F. A. Tillman, C. L. Hwang and W. Kuo, 1977, Optimization Techniques for System
Reliability with Redundancy - A Review, IEEE Transactions on Reliability R-26, 148-
155.

[32] F. A. Tillman, C. L. Hwang and W. Kuo, 1977, Determining Component Reliability and
Redundancy for Optimum System Reliability, IEEE Transactions on Reliability R-26,
162-165.

17

Table 1. Feasibility and Performance Comparison for the 33 Reliability Optimization
Problems Over 10 Runs of Each.

Comparison Death Penalty 5% NFT 3% NFT 1% NFT Dynamic NFT
% Feasible 100.00% 1.21% 80.00% 100.00% 100.00%
Best Solution 0.97096 0.97337 0.97302 0.97180 0.97366
Average Solution 0.96894 0.97239 0.97167 0.96956 0.97288
Coeff. of Variation (%) 0.14933 0.08218 0.11305 0.15847 0.06573

18

 1

 2

 3

 :

 1

 2

 n1

 3

 n2

 : :

 ns

 …

 1

 2

 3

 k1 k2 ks

 1 2 s

Figure 1. Series-Parallel System Configuration.

19

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Problem Number from Least to Most Constrained

R
 /

R
 o

f N
&

M

5% 3% 1% Dynamic Death Penalty

Figure 2. Reliability of Best Solution of Ten Runs for Each Problem Relative to N & M [20]
Solution.

20

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Problem Number From Least to Most Constrained

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 B

es
t F

ea
si

bl
e

5% 3% 1% Dynamic Death Penalty

Figure 3. Standard Deviation of Best Feasible Over Ten Runs for Each Problem.

21

Appendix

Configuration and Reliability, Cost and Weight of the Best Solution to Each Problem

no. W1 reliability cost weight penalty2 solution vector3

1 191 .98675 130 191 D 333,11,111,2222,333,22,333,3333,23,122,333,4444,12,12
2 190 .98603 129 190 D 333,11,111,222,333,22,333,3333,13,111,333,4444,11,12
3 189 .98556 130 189 D 333,11,111,2222,333,22,333,3333,13,122,333,4444,12,22
4 188 .98503 130 188 D 333,11,111,2222,333,22,333,3333,13,112,33,4444,11,12
5 187 .98429 129 187 D 333,11,111,2222,333,22,333,3333,13,122,33,4444,11,12
6 186 .98362 128 186 D 333,11,111,222,333,22,333,3333,33,122,333,4444,11,12
7 185 .98311 130 185 D 333,11,111,2222,333,22,333,3333,33,122,33,4444,11,12
8 184 .98239 128 184 D 333,11,111,222,333,22,333,3333,33,112,333,4444,11,22
9 183 .9819 130 183 3 333,11,111,2222,333,22,333,3333,33,112,33,4444,11,22
10 182 .98102 126 182 D 333,11,111,222,333,22,333,3333,33,112,33,4444,11,12
11 181 .98006 128 181 D 333,11,111,222,333,22,333,113,33,122,33,4444,11,12
12 180 .97942 129 180 D 333,11,111,222,333,22,333,113,33,112,23,4444,11,22
13 179 .97906 125 179 D 333,11,111,222,333,22,333,3333,33,112,33,4444,11,22
14 178 .97810 127 178 D 333,11,111,222,333,22,333,113,33,122,33,4444,11,22
15 177 .97715 125 177 D 333,11,111,222,333,22,333,133,33,112,33,4444,11,22
16 176 .97642 124 176 D 333,11,111,222,333,22,333,133,33,122,33,4444,11,22
17 175 .97552 122 175 D,5 333,11,111,222,333,22,11,3333,33,122,33,4444,11,22
18 174 .97435 123 174 5 333,11,111,222,333,22,11,133,33,112,33,4444,11,22
19 173 .97362 122 173 D,3,5 333,11,111,222,333,22,11,133,33,122,33,4444,11,22
20 172 .97266 120 172 5 333,11,111,222,333,22,13,3333,33,222,33,4444,11,22
21 171 .97186 121 171 D,3,5 333,11,111,222,333,22,13,133,33,122,33,4444,11,22
22 170 .97076 120 170 D,5 333,11,111,222,333,22,13,133,33,222,33,4444,11,22
23 169 .96922 120 169 D,5 333,11,111,222,333,22,33,133,33,122,33,4444,11,22
24 168 .96813 119 168 D,5 333,11,111,222,333,22,33,133,33,222,33,4444,11,22
25 167 .96634 118 167 D,5 333,11,111,222,33,22,13,133,33,222,33,4444,11,22
26 166 .96504 116 166 D,3,5 333,11,11,222,333,22,13,133,33,222,33,4444,11,22
27 165 .96371 117 165 D 333,11,111,222,33,22,33,133,33,222,33,4444,11,22
28 164 .96242 115 164 D,5 333,11,11,222,333,22,33,133,33,222,33,4444,11,22
29 163 .96064 114 163 D,5 333,11,11,222,33,22,13,133,33,222,33,4444,11,22
30 162 .95912 114 162 D,5 333,11,11,222,33,22,33,133,33,122,33,4444,11,22
31 161 .95803 113 161 D 333,11,11,222,33,22,33,133,33,222,33,4444,11,22
32 160 .95567 114 160 D,5 333,11,11,222,33,22,33,133,33,222,33,144,11,22
33 159 .95432 110 159 D,5 333,11,11,222,333,22,33,133,1,222,33,4444,11,22

NOTES:(1) C = 130 for all problems
(2) D ≡ dynamic NFT, 3 ≡ NFT 3% of constraint value, 5 ≡ NFT 5% of constraint value
(3) Solution vector lists component choices sequentially for each of the 14 subsystems (separated by a
 comma). Components indexed from most to least reliable.

