

An Ant Colony Approach to Redundancy Allocation

Yun-Chia Liang and Alice E. Smith, Senior Member, IEEE

Department of Industrial and Systems Engineering

Auburn University

207 Dunstan Hall

Auburn, AL 36849 USA

Submitted to IEEE Transactions on Reliability

October 2001

1

An Ant Colony Approach to Redundancy Allocation

Keywords: redundancy allocation, series-parallel system, ant colony optimization, genetic

algorithm, combinatorial optimization

I. Summary & Conclusions

 This paper uses an ant colony meta-heuristic optimization method to solve the

redundancy allocation problem (RAP). The RAP is a well known NP-hard problem that has

been the subject of much prior work, generally in a restricted form where each subsystem must

consist of identical components in parallel to make computations tractable. The newer meta-

heuristic methods overcome this limitation and offer a practical way to solve large instances of

the relaxed RAP where different components can be placed in parallel. The ant colony method

has not yet been used in reliability design, yet it is a method that is expressly designed for

combinatorial problems with a good neighborhood structure, as in the case of the RAP. An

effective ant colony optimization algorithm for the RAP is devised and tested on the most well

known suite of problems from the literature. It is shown that the ant colony method has excellent

performance with very little variability over problem instance or random number seed. It is

easily competitive with the best-known heuristics for redundancy allocation.

II. Introduction

The most studied design configuration of the redundancy allocation problem (RAP) is a

series system of s independent k-out-of-n:G subsystems (Figure 1). A subsystem is functioning

properly if at least ki of its pi components are operational. If ki is one for all subsystems, then it

is a series-parallel system. The RAP is NP-hard [6] and has been studied in many different

forms as summarized in Tillman, et al. [31], and most recently by Kuo & Prasad [23].

2

1

3

2

:

1

3

2

:

1

3

2

:

1 2 s

...

p1 p2 ps

ksk2k1

Figure 1. Series-parallel system configuration.

The RAP can be formulated to maximize system reliability given restrictions on system

cost of C and system weight of W. It is assumed that system weight and system cost are linear

combinations of component weight and cost, although this is a restriction which can readily be

relaxed using a meta-heuristic approach.

max)|(
1 iii

s

i
kRR y

=
Π= (1)

Subject to the constraints

∑ ≤
=

s

i
ii CC

1
,)(y

,)(
1
∑ ≤
=

s

i
ii WW y

If there is a pre-selected maximum number of components in parallel, the following constraint is

added:

∑ ≤≤
=

ia

j
iji pyk

1
max si ,...,2,1=∀

Typical assumptions are:

• The states of components and the system have only two options - good or failed.

3

• Failed components do not damage the system, and are not repaired.

• The failure rates of components when not in use are the same as when in use (i.e., active

redundancy).

• Component attributes including reliabilities are known and deterministic.

• The supply of components is unlimited (i.e., off-the-shelf).

The series-parallel RAP has been widely studied. Traditional approaches include

dynamic programming (e.g., [2, 19, 27]), integer programming (e.g., [3, 21, 22, 26]), and mixed-

integer and nonlinear programming (e.g., [32]). More recently, genetic algorithm (GA) meta-

heuristic formulations for the RAP have been proposed by Painton & Campbell [28], Levitin, et

al. [24], and Coit & Smith [7, 8]. For a fixed design configuration and known incremental

decreases in component failure rates and their associated costs, [28] uses a GA to find a

maximum reliability solution to satisfy specific cost constraints. An algorithm to optimize the 5th

percentile of the mean-time-between-failure distribution is devised. Levitin, et al. [24]

generalize a redundancy allocation problem to multi-state systems, where the system and its

components have a range of performance levels - from perfect functioning to complete failure.

A universal moment generating function is used to estimate system performance (capacity or

operation time), and a GA is employed as the optimization technique. Coit & Smith [7] use a

penalty guided GA which searches over feasible and infeasible regions to identify a final,

feasible optimal, or near optimal, solution to a relaxed version of the RAP. Coit & Smith [8]

also applied GA to problems with stochastic system reliability and mean-time-to-failure.

Because of the search space size of the RAP and lack of dominant heuristic, it is a good

candidate for other meta-heuristic approaches including the focus of this paper, the ant colony

optimization (ACO).

4

Notation

Ant Colony Optimization (ACO)

ijτ pheromone trail of combination (ji,)

ijP transition probability of combination (ji,)

ijη problem-specific heuristic of combination (ji,)

α relative importance of the pheromone trail

β relative importance of the problem-specific heuristic

ρ],1,0[∈ trail persistence

q],1,0[∈ a uniformly generated random number

0q],1,0[∈ a parameter which determines the relative importance of exploitation

versus exploration

k
ijτ∆ quantity of pheromone trail added to ijτ by the kth ant

γ amplification parameter in the penalty function

Redundancy Allocation Problem (RAP)

R overall reliability of the series-parallel system

C cost constraint

W weight constraint

s number of subsystems

ia number of available component choices for subsystem i

ijr reliability of component j available for subsystem i

ijc cost of component j available for subsystem i

5

ijw weight of component j available for subsystem i

ijy quantity of component j used in subsystem i

iy),...,(1 iiai yy

ip =∑
=

ia

j
ijy

1
, total number of components used in subsystem i

maxp maximum number of components in parallel (user assigned)

ik minimum number of components in parallel required for subsystem i to function

AC set of available component choices

III. The Ant Colony Optimization Approach

Ant Colony Optimization (ACO) is one of the adaptive meta-heuristic optimization

methods inspired by nature which include simulated annealing, genetic algorithms and tabu

search. ACO is distinctly different from these methods in that it is a constructive, rather than an

improvement, algorithm. ACO was inspired by the behavior of real ants. Ethologists have

studied how blind animals, such as ants, could establish shortest paths from their nest to food

sources. The medium that is used to communicate information among individual ants regarding

paths is pheromone trails. A moving ant lays some pheromone on the ground, thus marking the

path. The pheromone, while gradually dissipating over time, is reinforced as other ants use the

same trail. Therefore, efficient trails increase their pheromone level over time while poor ones

reduce to nill. Inspired by this behavior of real ants, Marco Dorigo first introduced the ant

colony optimization approach in his Ph.D. thesis in 1992 [13] and expanded it in his further work

as summarized in [14, 15, 18]. The characteristics of an artificial ant colony include a method to

construct solutions that balances pheromone trails and a problem-specific heuristic, a method to

both reinforce and evaporate pheromone, and local search to improve the constructed solutions.

6

ACO methods have been successfully applied to diverse combinatorial optimization problems

including traveling salesman [16, 17], quadratic assignment [25, 30], vehicle routing [4, 5, 20],

telecommunication networks [12], graph coloring [10], constraint satisfaction [29], Hamiltonian

graphs [33] and scheduling [1, 9, 11].

A. Overview of the Method and Encoding

The overview of the method is as follows.

Set all parameters and initialize the pheromone trails

Loop

 Sub-Loop

 Generate an ant based on the state transition rule

 Apply the online pheromone update rule

 Continue until all ants in the colony have been generated

Apply local search to each ant

 Evaluate all ants in the colony, rank them and record the best feasible one

 Apply the offline pheromone update rule

 Continue until a stopping criterion is reached

Each ant represents one design of the entire system, a collection of ip parts in parallel

)(maxppk ii ≤≤ for s different subsystems. The ip parts can be chosen in any combination

from the ia available type of components. The ia components are indexed in descending order

in accordance with their reliability; i.e., 1 represents the most reliable component, etc. An index

of 1+ia is assigned to a position where an additional component was not used (left blank), i.e.,

with attributes of zero. Each of the s subsystems is represented by maxp positions with each

component listed according to its reliability index, as in [7].

7

B. Initial Solution Construction

In the ACO-RAP algorithm, ants use problem-specific heuristic information, denoted by

ijη , as well as pheromone trails, denoted by ijτ , to choose ip components

(41 max −≤≤+ ppk ii) in each subsystem as follows where component v is selected for

subsystem i:

=
∈

V
v

ililACl
])()[(maxarg βα ητ

0

0

qq

qq

>

≤
 (2)

and V is selected according to the transition probability given by

∑

=
∈

0

)()(
)()(

ACl
ilil

iviv

ivP

βα

βα

ητ
ητ

Otherwise

ACv ∈
 (3)

where α and β are parameters that control the relative weight of the pheromone and the local

heuristic, respectively, AC is the set of available component choices for subsystem i, q is a

random number uniformly generated between 0 and 1, and 0q is a parameter which determines

the relative importance of exploitation versus exploration. When 0qq ≤ exploitation of the

knowledge available about the problem in the form of problem-specific heuristic and pheromone

trails are used, whereas 0qq > favors more (random) exploration. There is no pheromone value

for the “blank.”

8

The problem specific heuristic used is
ijij

ij
ij wc

r
+

=η where ijr , ijc , and ijw represent the

associated reliability, cost and weight of component j for subsystem i. Components with higher

reliability and smaller cost and weight have greater probability to be selected.

C. Objective Function

After all components of an ant k are selected, the unpenalized reliability kR is calculated

using (1). The penalized reliability kpR for systems that exceed C and / or W is calculated:

γγ

⋅

⋅=

kk
kkp C

C
W
WRR (4)

where the exponent γ is a preset amplification parameter. This penalty function encourages the

ACO-RAP algorithm to explore the feasible region and infeasible region that is near the border

of feasible area, and discourages, but permits, search further into the infeasible region.

D. Improving Constructed Solutions Through Local Search

After each colony is generated, each ants is improved using local search. Starting with

the first subsystem, a chosen component type is deleted and another component type is added.

All possibilities are enumerated. For example, if a subsystem has one of component 1, two of

component 2 and one of component 3, then one alternative is to delete a component 1 and to add

a component 2. Another possibility is to delete a component 3 and to add a component 1.

Whenever an improvement of the objective function is detected, the new solution replaces the

old one and the process continues until all subsystems have been searched. This local search

method does not require recalculating the entire system reliability each time, only the reliability

of the subsystem under consideration needs to be recalculated and system reliability is updated

accordingly.

9

E. Pheromone Trail Update

The pheromone update consists of two phases – online (ant-by-ant) updating and offline

(colony) updating. Online updating is done after each ant is constructed and its purpose is to

decay the pheromone intensity of the components that ant selected to encourage exploration of

other component choices in the subsequent ants to be constructed. Online updating is by

o)1(i
old
ij

new
ij τρτρτ ⋅−+⋅= (5)

where initial trail intensities (oiτ) are set to
ia

1 . After all ants have constructed a complete

system and have applied local search, pheromone trails are updated offline. Offline updating is

to reflect the discoveries of this colony, that is, this iteration. The offline trail update is:

∑
=

⋅+−⋅−+⋅=
E

m
m

old
ij

new
ij RmE

1
)1()1(ρτρτ (6)

where m = 1 is the best feasible ant yet found (which may or may not be in the current colony)

and the remaining ants are the top ones in the current colony.

IV. Computational Experience

The ACO is coded in Borland C++ and run using an Intel Pentium III 800 MHz PC with

256 MB RAM. All computations use real float point precision without rounding or truncating

values. The system reliability of the final solution is rounded to four digits behind the decimal

point in order to compare with results in literature.

The parameters of the ACO algorithm are set to the following values: 1=α , 5.0=β ,

9.00 =q , 9.0=ρ and E = 5. This gives relatively more weight to the pheromone trail than the

problem-specific heuristic and greater emphasis on exploitation rather than exploration. The

ACO is not very sensitive to changes in these values and tested well for quite a range of them.

10

For the penalty function, 1.0=γ except when the previous iteration has 90% or more infeasible

ants, then 3.0=γ . This increases the penalty temporarily to move the search back into the

feasible region if all or nearly all solutions in a colony are not feasible. It was found that this

dual level penalty improved performance on the most constrained instances of the test problems.

Because of changes in the magnitudes of R, C and W, all ijη and ijτ are normalized between

(0,1) before the state transition rules apply. 100 ants are used in each iteration. The stopping

criterion is when the number of iterations reaches 1000 or the best feasible ant has not changed

for 500 consecutive iterations. This results in a maximum of 100,000 ants.

The 33 variations of the Fyffe, et al. problem [19], which were devised by Nakagawa &

Miyazaki [27] were used to test the performance of ACO. In this set 130=C and W is

increased incrementally from 159 to 191. In [19] and [27], the optimization approaches required

that only identical components be placed in redundancy, however for the ACO approach, as in

Coit & Smith [7], different types are allowed to reside in parallel assuming that a value of maxp =

8 for all subsystems. Allowing component mixing, the search space size is larger than 33106.7 × .

Since the heuristic benchmark for the RAP where component mixing is allowed is the GA of [7],

it is chosen for comparison. Ten runs of each algorithm were made using different random

number seeds for each problem instance.

The results are summarized in Table 1 where the shaded box shows the best solution.

ACO is even or superior to the GA in all categories and all problem instances. When the

problem instances are less constrained (the first 18), the ACO performs much better than the GA.

When the problems become more constrained (the last 15), ACO is equal to GA for 12 instances

and better than GA for 3 instances in terms of the Max R measure (best over 10 runs). However,

for Min R (worst over 10 runs) and Mean R (of 10 runs), ACO dominates GA. Thus, the ACO

11

tends to find better solutions than the GA, is significantly less sensitive to random number seed,

and for the 12 most constrained instances, finds the best solution each and every run.

The configuration of the best solution and its system reliability, cost and weight for each

of the 33 instances are shown in Table 2. For instances 6 and 11, two alternatives with different

system cost but the same reliability and weight are found. All but instance 33 involve mixing of

components which is an indication that better designs can be identified by not restricting the

search space to a single component type per subsystem.

Table 1. Comparison of GA and ACO over 10 random number seeds each.

No C W Max R Mean R Min R Max R Mean R Min R
1 130 191 0.9867 0.9862 0.9854 0.9868 0.9862 0.9860
2 130 190 0.9857 0.9855 0.9852 0.9859 0.9858 0.9857
3 130 189 0.9856 0.9850 0.9838 0.9858 0.9853 0.9852
4 130 188 0.9850 0.9848 0.9842 0.9853 0.9849 0.9848
5 130 187 0.9844 0.9841 0.9835 0.9847 0.9841 0.9837
6 130 186 0.9836 0.9833 0.9827 0.9838 0.9836 0.9835
7 130 185 0.9831 0.9826 0.9822 0.9835 0.9830 0.9828
8 130 184 0.9823 0.9819 0.9812 0.9830 0.9824 0.9820
9 130 183 0.9819 0.9814 0.9812 0.9822 0.9818 0.9817

10 130 182 0.9811 0.9806 0.9803 0.9815 0.9812 0.9806
11 130 181 0.9802 0.9801 0.9800 0.9807 0.9806 0.9804
12 130 180 0.9797 0.9793 0.9782 0.9803 0.9798 0.9796
13 130 179 0.9791 0.9786 0.9780 0.9795 0.9795 0.9795
14 130 178 0.9783 0.9780 0.9764 0.9784 0.9784 0.9783
15 130 177 0.9772 0.9771 0.9770 0.9776 0.9776 0.9776
16 130 176 0.9764 0.9760 0.9751 0.9765 0.9765 0.9765
17 130 175 0.9753 0.9753 0.9753 0.9757 0.9754 0.9753
18 130 174 0.9744 0.9732 0.9716 0.9749 0.9747 0.9741
19 130 173 0.9738 0.9732 0.9719 0.9738 0.9735 0.9731
20 130 172 0.9727 0.9725 0.9712 0.9730 0.9726 0.9714
21 130 171 0.9719 0.9712 0.9701 0.9719 0.9717 0.9710
22 130 170 0.9708 0.9705 0.9695 0.9708 0.9708 0.9708
23 130 169 0.9692 0.9689 0.9684 0.9693 0.9693 0.9693
24 130 168 0.9681 0.9674 0.9662 0.9681 0.9681 0.9681
25 130 167 0.9663 0.9661 0.9657 0.9663 0.9663 0.9663
26 130 166 0.9650 0.9647 0.9636 0.9650 0.9650 0.9650
27 130 165 0.9637 0.9632 0.9627 0.9637 0.9637 0.9637
28 130 164 0.9624 0.9620 0.9609 0.9624 0.9624 0.9624
29 130 163 0.9606 0.9602 0.9592 0.9606 0.9606 0.9606
30 130 162 0.9591 0.9587 0.9579 0.9592 0.9592 0.9592
31 130 161 0.9580 0.9572 0.9561 0.9580 0.9580 0.9580
32 130 160 0.9557 0.9556 0.9554 0.9557 0.9557 0.9557
33 130 159 0.9546 0.9538 0.9531 0.9546 0.9546 0.9546

C&S GA - 10 runs ACO-RAP - 10 runs

12

Table 2. Configuration, reliability, cost and weight of the best solution to each problem.

No. W R Cost Weight Solution
1 191 0.9868 130 191 333,11,111,2222,333,22,333,3333,23,122,333,4444,12,12
2 190 0.9859 129 190 333,11,111,2222,333,22,333,3333,22,112,333,4444,11,22
3 189 0.9858 130 189 333,11,111,2222,333,22,333,3333,22,122,11,4444,11,12
4 188 0.9853 130 188 333,11,111,2222,333,22,333,3333,23,112,13,4444,12,12
5 187 0.9847 130 187 333,11,111,2222,333,22,333,3333,23,122,13,4444,11,12
6 186 0.9838 129 186 333,11,111,2222,333,22,333,3333,22,122,11,4444,11,22

130 186 333,11,111,2222,333,24,333,3333,33,122,13,4444,12,12
7 185 0.9835 130 185 333,11,111,2222,333,22,333,3333,13,122,13,4444,11,22
8 184 0.9830 130 184 333,11,111,222,333,22,333,3333,33,112,11,4444,11,12
9 183 0.9822 128 183 333,11,111,222,333,22,333,3333,33,112,13,4444,11,12

10 182 0.9815 127 182 333,11,111,222,333,22,333,3333,33,122,13,4444,11,12
11 181 0.9807 125 181 333,11,111,222,333,22,333,3333,13,122,13,4444,11,22

126 181 333,11,111,222,333,22,333,3333,23,122,11,4444,11,22
12 180 0.9803 128 180 333,11,111,222,333,22,333,3333,33,122,11,4444,11,22
13 179 0.9795 126 179 333,11,111,222,333,22,333,3333,33,122,13,4444,11,22
14 178 0.9784 125 178 333,11,111,222,333,22,333,3333,33,222,13,4444,11,22
15 177 0.9776 126 177 333,11,111,222,333,22,333,133,33,122,13,4444,11,22
16 176 0.9765 125 176 333,11,111,222,333,22,333,133,33,222,13,4444,11,22
17 175 0.9757 125 175 333,11,111,222,333,22,13,3333,33,122,11,4444,11,22
18 174 0.9749 123 174 333,11,111,222,333,22,13,3333,33,122,13,4444,11,22
19 173 0.9738 122 173 333,11,111,222,333,22,13,3333,33,222,13,4444,11,22
20 172 0.9730 123 172 333,11,111,222,333,22,13,133,33,122,13,4444,11,22
21 171 0.9719 122 171 333,11,111,222,333,22,13,133,33,222,13,4444,11,22
22 170 0.9708 120 170 333,11,111,222,333,22,13,133,33,222,33,4444,11,22
23 169 0.9693 121 169 333,11,111,222,333,22,33,133,33,222,13,4444,11,22
24 168 0.9681 119 168 333,11,111,222,333,22,33,133,33,222,33,4444,11,22
25 167 0.9663 118 167 333,11,111,222,33,22,13,133,33,222,33,4444,11,22
26 166 0.9650 116 166 333,11,11,222,333,22,13,133,33,222,33,4444,11,22
27 165 0.9637 117 165 333,11,111,222,33,22,33,133,33,222,33,4444,11,22
28 164 0.9624 115 164 333,11,11,222,333,22,33,133,33,222,33,4444,11,22
29 163 0.9606 114 163 333,11,11,222,33,22,13,133,33,222,33,4444,11,22
30 162 0.9592 115 162 333,11,11,222,33,22,33,133,33,222,13,4444,11,22
31 161 0.9580 113 161 333,11,11,222,33,22,33,133,33,222,33,4444,11,22
32 160 0.9557 112 160 333,11,11,222,33,22,33,333,33,222,13,4444,11,22
33 159 0.9546 110 159 333,11,11,222,33,22,33,333,33,222,33,4444,11,22

It is difficult to make a precise computational comparison. CPU seconds vary according

to hardware, software and coding. Both the ACO and the GA are population-based and iterative,

therefore the computational effort changes in direct proportion to these factors. The number of

solutions constructed in [7] (a population size of 40 with 1200 iterations) is about half of the

ACO algorithm (a colony size of 100 with up to 1000 iterations). However, given the improved

performance per seed of the ACO, a direct comparison per run is not meaningful. If the average

solution of the ACO is compared to the best performance of GA, in 13 instances ACO is better,

in 9 instances GA is better and in the remaining instances (11) they are equal, as shown in Figure

2. Since this is a comparison of average performance (ACO) versus best of ten performance

13

(GA), the additional computational effort of the ACO is more than compensated for. In

summary, an average run of ACO is apt to be as good or better than the best of 10 runs of GA.

The difference in variability over all 33 test problems is clearly shown in Figure 3.

Given the well-structured neighborhood of the RAP, a meta-heuristic that exploits it is

likely to be more effective and more efficient than one that does not. While the GA certainly

performs well relative to previous approaches, the mostly random mechanisms of crossover and

mutation result in greater run to run variability than the ACO. Since the ACO shares the GA’s

attributes of flexibility, robustness and implementation ease and improves on its random

behavior, it seems a very promising general method for other NP-hard reliability design

problems such as those found in networks and other complex structures.

-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Problem Instance

M
ea

n
A

C
O

 -
M

ax
 G

A

Figure 2. Comparison of Mean ACO with Best GA Performance.

14

0.9500

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

(a) ACO

0.9500

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

(b) GA

Figure 3. Range of Performance over 10 Seeds with Mean Shown as Horizontal Dash.

15

References

1. Bauer, A., B. Bullnheimer, R. F. Hartl, and C. Strauss, “Minimizing Total Tardiness on a
Single Machine Using Ant Colony Optimization,” Central European Journal of Operations
Research, vol. 8, no. 2, 2000, 125-141.

2. Bellman, R. and S. Dreyfus, “Dynamic Programming and the Reliability of Multicomponent
Devices,” Operations Research, vol. 6, 1958, 200-206.

3. Bulfin, R. L. and C. Y. Liu, “Optimal Allocation of Redundant Components for Large
Systems,” IEEE Transactions on Reliability, vol. R-34, no. 3, 1985, 241-247.

4. Bullnheimer, B., R. F. Hartl, and C. Strauss, “Applying the Ant System to the Vehicle
Routing Problem,” in S. Voss, S. Martello, I. H. Osman, and C. Roucairol (eds.), Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization, 1999,
Kluwer, 285-296.

5. Bullnheimer, B., R. F. Hartl, and C. Strauss, “An Improved Ant System Algorithm for the
Vehicle Routing Problem,” Annals of Operations Research, vol. 89, 1999, 319-328.

6. Chern, M. S., “On the Computational Complexity of Reliability Redundancy Allocation in a
Series System,” Operations Research Letters, vol. 11, 1992, 309-315.

7. Coit, D. W. and A. E. Smith, “Reliability Optimization of Series-Parallel Systems Using a
Genetic Algorithm,” IEEE Transactions on Reliability, vol. 45, no. 2, 1996, 254-260.

8. Coit, D. W. and A. E. Smith, “Considering Risk Profiles in Design Optimization for Series-
Parallel Systems,” Proceedings of the 1997 Annual Reliability and Maintainability
Symposium, Philadelphia, January 1997, 271-277.

9. Colorni, A., M. Dorigo, V. Maniezzo, and M. Trubian, “Ant System for Job-Shop
Scheduling,” Belgian Journal of Operations Research, Statistics and Computer Science
(JORBEL), vol. 34, no. 1, 1994, 39-53.

10. Costa, D. and A. Hertz, “Ants Can Colour Graphs,” Journal of the Operational Research
Society, vol. 48, 1997, 295-305.

11. den Besteb, M., T. Stützle, and M. Dorigo, “Ant Colony Optimization for the Total Weighted
Tardiness Problem,” Proceedings of the 6th International Conference on Parallel Problem
Solving from Nature (PPSN VI), LNCS 1917, Berlin, 2000, 611-620.

12. Di Caro, G. and M. Dorigo, “Ant Colonies for Adaptive Routing in Packet-Switched
Communication Networks,” Proceedings of the 5th International Conference on Parallel
Problem Solving from Nature (PPSN V), Amsterdam, The Netherlands, September 1998,
673-682.

13. Dorigo, M., Optimization, Learning and Natural Algorithms, Ph.D. Thesis, 1992, Politecnico
di Milano, Italy.

14. Dorigo, M. and G. Di Caro, “The Ant Colony Optimization Meta-Heuristic,” in D. Corne, M.
Dorigo and F. Glover (eds.), New Ideas in Optimization, 1999, McGraw-Hill, 11-32.

15. Dorigo, M., G. Di Caro, and L. M. Gambardella, “Ant Algorithms for Discrete
Optimization,” Artificial Life, vol. 5, no. 2, 1999, 137-172.

16

16. Dorigo, M. and L. M. Gambardella, “Ant Colonies for the Travelling Salesman Problem,”
BioSystems, vol. 43, 1997, 73-81.

17. Dorigo, M. and L. M. Gambardella, “Ant Colony System: A Cooperative Learning Approach
to the Travelling Salesman Problem,” IEEE Transactions on Evolutionary Computation, vol.
1, no. 1, 1997, 53-66.

18. Dorigo, M., V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony of
Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:
Cybernetics, vol. 26, no. 1, 1996, 29-41.

19. Fyffe, D. E., W. W. Hines, and N. K. Lee, “System Reliability Allocation And a
Computational Algorithm,” IEEE Transactions on Reliability, vol. R-17, no. 2, 1968, 64-69.

20. Gambardella, L. M., E. Taillard, and G. Agazzi, “MACS-VRPTW A Multiple Ant Colony
System for Vehicle Routing Problems with Time Windows,” in D. Corne, M. Dorigo and F.
Glover (eds.), New Ideas in Optimization, 1999, McGraw-Hill, 63-76.

21. Gen, M., K. Ida, Y. Tsujimura, and C. E. Kim, “Large-Scale 0-1 Fuzzy Goal Programming
and Its Application to Reliability Optimization Problem,” Computers and Industrial
Engineering, vol. 24, no. 4, 1993, 539-549.

22. Ghare, P. M. and R. E. Taylor, “Optimal Redundancy for Reliability in Series Systems,”
Operations Research, vol. 17, 1969, 838-847.

23. Kuo, W. and V. R. Prasad, “An Annotated Overview of System-reliability Optimization,”
IEEE Transactions on Reliability, vol. 49, no. 2, 2000, 176-187.

24. Levitin, G., A. Lisnianski, H. Ben-Haim, and D. Elmakis, “Redundancy Optimization for
Series-Parallel Multi-State Systems,” IEEE Transactions on Reliability, vol. 47, no. 2, 1998,
165-172.

25. Maniezzo, V. and A. Colorni, “The Ant System Applied to the Quadratic Assignment
Problem,” IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 5, 1999,
769-778.

26. Misra, K. B. and U. Sharma, “An Efficient Algorithm to Solve Integer-Programming
Problems Arising in System-Reliability Design,” IEEE Transactions on Reliability, vol. 40,
no. 1, 1991, 81-91.

27. Nakagawa, Y. and S. Miyazaki, “Surrogate Constraints Algorithm for Reliability
Optimization Problems with Two Constraints,” IEEE Transactions on Reliability, vol. R-30,
no. 2, 1981, 175-180.

28. Painton, L. and J. Campbell, “Genetic Algorithms in Optimization of System Reliability,”
IEEE Transactions on Reliability, vol. 44, no. 2, 1995, 172-178.

29. Schoofs, L. and B. Naudts, “Ant Colonies are Good at Solving Constraint Satisfaction
Problems,” Proceedings of the 2000 Congress on Evolutionary Computation, San Diego,
CA, July 2000, 1190-1195.

30. Stuetzle, T. and M. Dorigo, “ACO Algorithms for the Quadratic Assignment Problem,” in D.
Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization, 1999, McGraw-Hill.

31. Tillman, F. A., C. L. Hwang, and W. Kuo, “Optimization Techniques for System Reliability

17

with Redundancy - A Review,” IEEE Transactions on Reliability, vol. R-26, no. 3, 1977,
148-155.

32. Tillman, F. A., C. L. Hwang, and W. Kuo, “Determining Component Reliability and
Redundancy for Optimum System Reliability,” IEEE Transactions on Reliability, vol. R-26,
no. 3, 1977, 162-165.

33. Wagner, I. A. and A. M. Bruckstein, “Hamiltonian(t)-An Ant Inspired Heuristic for
Recognizing Hamiltonian Graphs,” Proceedings of the 1999 Congress on Evolutionary
Computation, Washington, D.C., July 1999, 1465-1469.

