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Abstract. GRASP (greedy randomized adaptive search procedure) is a meta-
heuristic for combinatorial optimization. GRASP usually is implemented as a
multistart procedure, where each iteration is made up of a construction phase,
where a randomized greedy solution is constructed, and a local search phase
which starts at the constructed solution and applies iterative improvement
until a locally optimal solution is found. This chapter gives an overview of
GRASP. Besides describing the basic building blocks of a GRASP, the chap-
ter covers enhancements to the basic procedure, including reactive GRASP,
hybrid GRASP, and intensification strategies.

1. Introduction

Consider a combinatorial optimization problem, where one is given a discrete set
X of solutions and an objective function f(x) : x ∈ X → �

to be minimized and
seeks a solution x∗ ∈ X such that f(x∗) ≤ f(x), for all x ∈ X . Problems of this
type are sometimes easy to solve, i.e. they can be solved in polynomial time, but
more often polynomial-time algorithms (Garey and Johnson, 1979a) to solve them
are not known and one usually resorts to heuristics that are not guaranteed to find
an optimal solution in polynomial time.

Local search (see Section x.xx in this handbook) is based on searching a local
neighborhood for an improving solution. Given a solution x ∈ X , the elements of
the neighborhood N(x) of x are those solutions that can be obtained by applying
an elementary modification (often called a move) to x. For example, consider
x = (0, 1, 0) and the 1-flip neighborhood of a 0/1 array, where neighbors are all
0/1 arrays that differ from x by exactly one element. For this example N(x) =
{(0, 0, 0), (1, 1, 0), (0, 1, 1)}. Now consider x = (2, 1, 3) and 2− swap neighborhood
of a permutation array. We have N(x) = {(3, 1, 2), (2, 3, 1), (1, 2, 3)}. Local search
starts from an initial solution x0 ∈ X and iteratively generates a series of improving
solutions x1, x2, . . . , xk. At the k-th iteration, N(xk) is searched for an improving
solution xk+1 such that f(xk+1) < f(xk). If such a solution is found, it is made
the current solution. Otherwise, the search ends with xk as a local optimum.

The effectiveness of local search depends on several factors, such as theneighbor-
hood structure, the function to be minimized, and the starting solution. A solution
x is said to be in the basin of attraction of the global optimum if local search starting
from x leads to the global optimum. Once the neighborhood and objective function
are determined, different starting solutions can be used to start the local search in
a multi-start procedure. If the starting solution is in the basin of attraction of the
global optimum, local search finds the global optimum. Otherwise, a nonglobal
local minimum is found. By repeatedly using a randomly generated solution as the
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starting solution for local search, one can expect to eventually produce a starting
solution in the basin of attraction of the global optimum.

Randomly generated solutions are of poor quality on the average. Even if a
randomly generated solution is in the basin of attraction of a good quality local
optimal solution, the number of moves needed to reach the local optimum can be
large, even exponential in the problem size (Johnson et al., 1988). The greedy algo-
rithm usually produces solutions of better quality than those of randomly generated
solutions. A greedy algorithm constructs a solution, one element at a time. At each
step in the construction, a set C of candidate elements that can be added to the
solution at that step, is constructed. A greedy function is applied to each candidate
element and the elements are ranked according to their greedy function values. A
best ranked element is added to the solution. Taking this into account, the set C
is updated, causing the greedy function to change. The process is repeated until
C = ∅.

With randomly generated initial solutions, a multi-start method eventually will
find a global optimum. However, using greedy solutions as starting points for local
search in a multi-start procedure will usually lead to good, though, most often,
suboptimal solutions. This is because the amount of variability in greedy solutions
is small and it is less likely that a greedy starting solution will be in the basin of
attraction of a global optimum. If there are no ties in the greedy function values
or, if a deterministic rule is used to break ties, there is no variability and a multi-
start procedure would produce the same solution in each iteration. A semi-greedy
heuristic (Hart and Shogan, 1987; Feo and Resende, 1989) adds variability to the
greedy algorithm. After the candidate elements are ranked according to their greedy
function values, well ranked candidate elements are placed in a restricted candidate
list (RCL) and an element from the RCL is selected at random and is added to the
solution.

Hart and Shogan (1987) and Feo and Resende (1989) proposed two schemes to
build an RCL. In the cardinality based scheme, an integer k is fixed and the k top
ranked candidates are placed in the RCL. In the value based scheme, all candidate
elements with greedy function values within α% of the greedy value are placed in
the RCL, where α ∈ [0, 100]. A scheme that is less prone to scaling problem was
proposed by Resende et al. (2000), where the RCL elements are those which are
within α(ḡ − g) of the greedy function value, where ḡ = max{g(c)|c ∈ C} and g =
min{g(c)|c ∈ C}. For a minimization problem, RCL = {c ∈ C | g(c) ≤ g+α(ḡ−g).
Note that if α = 0, then the semi-greedy construction reduces to a greedy algorithm,
and if α = 1, it is random construction.

We can now describe a basic greedy randomized adaptive search procedure
(GRASP) (Feo and Resende, 1989, 1995) for a minimization problem. Let x∗ is the
best solution found and f ∗ = f(x∗).

1. f∗ =∞;
2. Repeat until a stopping criterion is satisfied:

(a) Generate a greedy randomized solution x;
(b) Find local optimum xl with local search starting from x;
(c) If f(xl) < f∗ then

(i) f∗ = f(xl);
(ii) x∗ = xl;
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2. The restricted candidate list

The cardinality-based RCL construction mechanism has not been frequently used
in the literature. Most GRASP implementations have used some type of value-based
RCL construction scheme. In such a scheme, the RCL parameter α determines the
level of greediness or randomness in the construction. Early implementations of
GRASP used a fixed value for α, usually determined through experimentation.
In some cases, however, simply changing the problem class, or the instance of
a particular problem class, required a different parameter value. Mockus et al.
(1997) pointed out that, excluding the case of random construction, a GRASP
with a fixed RCL parameter value may not converge (asymptotically) to a global
minimum because the construction mechanism may exclude all solutions in the
basin of attraction of a global minimizer.

A few remedies for this have been proposed. Resende et al. (2000) proposed
using a different randomly generated α ∈ UNIF[0, 1] in each GRASP iteration.
A mechanism for a self adjusting α was proposed by Prais and Ribeiro (2000) in
a strategy they named Reactive GRASP. As in Resende et al. (2000), a different
randomly generated α is used in each GRASP iteration. However, instead of be-
ing chosen from a uniform distribution, α is chosen from a discrete set of values
{α1, α2, . . . , αm}. The probability that αk is selected is p(αk). Reactive GRASP
adaptively changes the probabilities {p(α1), p(α2), . . . , p(αm)} to favor values of α
that produce good solutions. Let f ∗ be the value of the best solution found so far
during a GRASP run and let ai be the average value of the solutions found using
αi in the construction phase. Periodically (say every Nα GRASP iterations), the
values qi = f∗/ai and p(αi) = qi/

∑m
j=1 qj are computed for i = 1, . . . ,m. Note

that the more suitable a value of αi is, the larger the value of qi is, and consequently,
the higher the value of p(αi), making αi more likely to be selected.

An alternative to using a RCL was proposed by Bresina (1996). In this scheme
candidates are not excluded from selection during construction, but are assigned
probabilities of being selected that are determined by their greedy function values.
The greedy function g(c) is applied to all candidate elements c ∈ C and a bias br
is assigned to the r-th ranked element. Several biases are proposed. In logarithmic
bias, br = 1/ log(r + 1); in linear bias, br = 1/r; in polynomial(n) bias, br = 1/rn;
in exponential bias, br = 1/er; and in random bias, br = 1. The probability that

the r-th ranked candidate element is selected is p(r) = br/
∑|C|
j=1 bj . Binato et al.

(2001) used bias function to select an element from the RCL.
Glover and Laguna (1997) referred to the observation that “good solutions at

one level are likely to be found ‘close to’ good solutions at an adjacent level” as the
proximate optimality principle (POP). Fleurent and Glover (1999) pointed out that
POP can be interpreted in relation to GRASP. Imperfections introduced during
the steps of GRASP construction can be “ironed-out” by applying local search
during (and not only at the end of) construction. POP local search is not applied
after each construction iteration, but rather two or three times during construction
(Fleurent and Glover, 1999; Binato et al., 2001). This avoids the reduction in
solution variability that would result if it is applied after each construction step.

3. Long-term memory

One possible shortcoming of the standard GRASP framework is the indepen-
dence of the GRASP iterations, i.e. the fact that GRASP does not learn from
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the history of solutions found in previous iterations. This is so because the stan-
dard GRASP discards information about any solution encountered that does not
improve upon the incumbent. Besides Reactive GRASP, which can be viewed as
a long-term memory strategy, other strategies that make use of information gath-
ered throughout GRASP iterations have been proposed, either to speed up the
solution process, avoiding unnecessary searches, or to intensify the search around
good-quality solutions.

A hash table (Aho et al., 1974; Cormen et al., 1990) is a data structure for
implementing dictionaries (dynamic sets with the operations of insert, delete, and
search). The expected time to search an element in a hash table is O(1), which
makes hash tables a computationally effective data structure. A hash table is used
in GRASP to keep track of all solutions used as initial solutions for local search.
After construction of the greedy randomized solution, the hash table is consulted
to verify if the solution is new. If it is, it is added to the hash table, and local
search is applied starting from that solution. Otherwise, local search is skipped,
and a new GRASP iterations is started.

Path relinking was first introduced in the context of tabu search (Glover and La-
guna, 1997) as an approach to integrate intensification and diversification strategies
in the search. See Glover et al. (2000) for a survey of path relinking. It explores
trajectories that connect high quality solutions by starting from an initial solu-
tion and generating a path in the neighborhood of this solution towards another
solution, called the guiding solution. This path is generated by selecting moves
that introduce in the initial solution attributes of the guiding solution. At each
step, all moves that incorporate attributes of the guiding solution are analyzed and
the move that best improves (or least deteriorates) the initial solution is chosen.
Path relinking in the context of GRASP was first introduced by Laguna and Mart́ı
(1999).

A refinement of GRASP with path relinking was made by Aiex et al. (2000a). A
pool P of elite solutions is formed with the solutions found in the first |P | GRASP
iterations. After this initial phase, each solution sg produced by the GRASP local
search phase is relinked with one or more elite solutions. Given sg and elite solution
se, two paths are generated, one from sg to se, and another from se to sg . Two paths
are used because they often visit different intermediate solutions. Two strategies for
selecting se are used. The first is the one proposed by Laguna and Mart́ı, where se
is selected at random from the pool. The second, relinks sg with all elite solutions
in P .

Laguna and Mart́ı update their pool by maintaining in it three best-quality
solutions. Aiex et al. used an approach proposed by Fleurent and Glover (1999)
for using elite solutions within the GRASP framework. The elite set is made up of
p = |P | elements. Let cbest and cworst be the objective function values of the best
and the worst solutions in P , respectively. Given two solutions s and t, let ∆(s, t)
be a measure of dissimilarity of solutions s and t.

Solution sgmin output from the path relinking procedure is a candidate for in-
sertion into the pool and is accepted if it satisfies one of the following acceptance
criteria:

1. cgmin < cbest, i.e. sgmin is the best solution found so far;
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2. cbest < cgmin < cworst and for all elite solutions sp ∈ P , ∆(sgmin, sp) > δ,
where δ is a cut-off parameter, i.e. sgmin is better than the worst elite solution
and differs significantly from all elite solutions.

Once accepted for insertion into P , sgmin replaces the worst elite solution, which
is discarded from P .

Path relinking can also be used as an intensification phase for the elite set. This
is accomplished by applying path relinking to each pair of elite solutions in the
pool and updating the pool if necessary. The procedure is repeated until no further
change in the pool occurs. This type of intensification can be done in a post-
optimization phase (using the final pool of elite solutions), or periodically during
the optimization (using the current set of elite solutions).

When applying path relinking as a post-optimization step, after no further
change in the elite set occurs, the local search procedure is applied to each elite
solution, as the solutions produced by path relinking are not always local optima.
The local optima found are candidates for insertion into the elite set. If a change
in the elite set occurs, the entire post-processing step is repeated.

Another use of the information obtained from the “good” solutions is to imple-
ment a memory-based procedure to influence the construction phase by modifying
the probabilities assigned to each RCL element. Fleurent and Glover (1999) intro-
duced a memory-based scheme that uses long-term memory in multi-start heuristics
such as GRASP. Their scheme maintains a set P of elite solutions to be used in the
construction phase. As in the description of the elite set for path relinking, for a
solution s to become elite, it must be either better than the best member of P , or
better than the worst member of P , and sufficiently different from the other elite
solutions. For example, one can count identical solution vector components and
set a threshold for rejection. A strongly determined variable is one that cannot be
changed without eroding the objective or changing significantly other variables. A
consistent variable is one that receives a particular value in a large portion of the
elite solution set. Let I(c) be a measure of the strongly determined and consistent
features of choice c, i.e. I(c) becomes larger as e resembles solutions in elite set P .
The intensity function I(c) is used in the construction phase as follows. Recall that
g(c) is the greedy function. Let E(c) = F (g(c), I(c)) be a function of the greedy
and the intensification functions. For example, E(c) = λg(c) + I(c). The intensifi-
cation scheme biases selection from the RCL to those elements c with a high value
of E(c) by setting the probability of selecting c to be p(c) = E(c)/

∑
s∈RCL E(s).

The function E(c) can vary with time by changing the value of λ, e.g. initially
λ is set to a large value and when diversification is called for, λ is decreased. A
procedure for changing the value of λ is given by Fleurent and Glover. See also
Binato et al. (2001) for an application of this long-term memory strategy.

4. GRASP in hybrid metaheuristics

It is easy to incorporate GRASP in a hybrid metaheuristic. Since there is freedom
to choose the local search algorithm, a number of metaheuristics can be chosen for
this task. See Laguna and González-Velarde (1991), Colomé and Serra (1998), Del-
maire et al. (1999), and Liu et al. (2000) for examples of the use of tabu search and
simulated annealing as a GRASP local search procedure. Ahuja et al. (1998) use
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Table 1. CPU time (in seconds) and speed-up on MAX-SAT
problems. Average speed-up is shown for 5, 10, and 15 proces-
sors.

1 processor 5 processors 10 processors 15 processors
problem time time speed-up time speed-up time speed-up

jnh201 310.4 62.8 4.9 30.5 10.2 22.2 14.0
jnh202 312.2 59.8 5.2 31.2 10.0 23.4 13.3
jnh203 351.2 72.3 4.9 35.2 10.0 23.2 15.1
jnh205 327.8 63.4 5.2 32.1 10.2 22.5 14.6

jnh207 304.7 56.7 5.4 29.6 10.3 19.8 15.4
jnh208 355.2 65.6 5.4 33.2 10.7 21.0 16.9
jnh209 339.0 60.5 5.6 33.6 10.1 21.6 15.7
jnh210 318.5 57.6 5.5 32.5 9.8 20.8 15.3
jnh301 414.5 85.3 4.9 45.2 9.2 28.3 14.6
jnh302 398.7 88.6 4.5 48.2 8.3 27.0 14.7

average speed-up: 5.2 9.9 15.0

local search with large neighborhoods in a GRASP framework. Variable neighbor-
hood search (Hansen and Mladenović, 1998) is another candidate for hybridization
with GRASP.

Path relinking, which was described in the previous section, can be incorporated
into GRASP to form a powerful metaheuristic (Laguna and Mart́ı, 1999; Aiex et al.,
2000a).

GRASP has also been used in conjunction with genetic algorithms as a mech-
anism to generate initial solutions (Ahuja et al., 2000), as well as in crossover
(Lourenço et al., 1998).

5. Parallel GRASP

As with any multi-start heuristic for combinatorial optimization, a GRASP can
be implemented in parallel by dividing the k independent iterations among ρ pro-
cessors. Another approach is to give a target value τ of the objective function to
each processor and execute the algorithm until the first processor finds a solution
with value at least as good as τ , at which point all processors halt. Some care is
needed to assure that no two iterations start with identical random number gener-
ator seeds (Pardalos et al., 1996). These are examples of multiple independent walk
parallelism (Verhoeven and Aarts, 1995).

Many parallel implementations of GRASP using the above strategies have been
reported in the literature, e.g. (Martins et al., 2000, 1998; Murphey et al., 1998b;
Pardalos et al., 1995, 1996). In most of these papers, a common observation was
made. The speedups in the measured running times were proportional to the num-
ber of processors. A typical example can be seen in Pardalos et al. (1996) where,
for a PVM-based implementation of a parallel GRASP for the MAX-SAT, average
speed-ups almost identical to the number of processors were measured (see Table 1).

This observation can be explained if the random variable solution time to target
is exponentially distributed, as indicated by the following proposition (Verhoeven
and Aarts, 1995).

Proposition 1. Let Pρ(t) be the probability of not having found a given (target)

solution in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ � + ,
i.e. P1 corresponds to an exponential distribution, then Pρ(t) = e−ρt/λ.
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Figure 1. Superimposed empirical and theoretical distributions.

The above proposition follows from the definition of the exponential distribution.
It implies that the probability of finding a solution of a given value in time ρt with
a sequential process is equal to the probability of finding a solution at least as good
as that given value in time t with ρ independent parallel processes. Hence, it is
possible to achieve linear speed-up in solution time to target solution by multiple
independent processes.

An analogous proposition can be stated for a two parameter (shifted) exponential
distribution.

Proposition 2. Let Pρ(t) be the probability of not having found a given (target)

solution in t time units with ρ independent processes. If P1(t) = e−(t−µ)/λ with
λ ∈ � + and µ ∈ �

, i.e. P1 corresponds to a two parameter exponential distribution,
then Pρ(t) = e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two parameter
exponential distribution. It implies that the probability of finding a solution of a
given value in time ρt with a sequential process is equal to 1−e−(ρt−µ)/λ while, the
probability of finding a solution at least as good as that given value in time t with
ρ independent parallel processes is 1 − e−ρ(t−µ)/λ. Note that if µ = 0, then both
probabilities are equal and correspond to the non-shifted exponential distribution.
Furthermore, if ρµ � λ, then the two probabilities are approximately equal and
it is possible to approximately achieve linear speed-up in solution time to target
solution by multiple independent processes.

Aiex et al. (2000b) studied the empirical probability distributions of the random
variable time to target solution in five GRASP implementations. They showed that,
given a target solution value, the time it takes GRASP to find a solution at least as
good as the target fits a two-parameter exponential distribution. As an example,
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Figure 1 shows a plot of the empirical and estimated theoretical distributions for
GRASP on an particular instance. This plot was generated using 200 independent
runs of GRASP and the methodology described in Aiex et al. (2000b).

6. Applications of GRASP

Since the late 1980s GRASP has been applied to a wide range of operations re-
search and industrial optimization problems. These include problems in scheduling,
routing, logic, partitioning, location and layout, graph theory, assignment, manu-
facturing, transportation, telecommunications, automatic drawing, electrical power
systems, and VLSI design. Festa and Resende (2001) presented an extensive anno-
tated bibliography of the GRASP literature. In this section, we will review a small
part of these applications, limiting ourselves to applications in logic, assignment,
and location.

6.1. Logic.

6.1.1. The satisfiability problem. Let C1, C2, . . . , Cm bem clauses, where each clause
Ci contains ni Boolean variables x1, x2, . . . , xni , which can take on only the values
true or false (1 or 0). Each clause Ci contains a set of literals connected by the
or (∨) operator,

Ci =

ni∨

j=1

lij ,

where the literals lij ∈ {xi, x̄i | i = 1, . . . , n}, and x̄i is the negation of xi. A
formula is a conjunction of clauses, that is, a set of clauses connected by the and
(∧) operator,

C1 ∧ C2 ∧ · · · ∧ Cm.

In the satisfiability problem (SAT) we are given m clauses involving n boolean vari-
ables, and we are to determine whether there exists an assignment of truth values
to the boolean variables, such that the formula evaluates to true. SAT was the first
problem shown to be NP-complete (Cook, 1971; Garey and Johnson, 1979b). The
satisfiability problem is a central problem in artificial intelligence, mathematical
logic, and combinatorial optimization. Problems in computer vision, VLSI design,
databases, automated reasoning, computer-aided design and manufacturing, involve
the solution of instances of the satisfiability problem. Furthermore, SAT is the ba-
sic problem in computational complexity (Cook, 1971; Garey and Johnson, 1979b).
Developing efficient exact algorithms and heuristics for satisfiability problems can
lead to general approaches for solving combinatorial optimization problems. Re-
sende and Feo (1996) presented four GRASP implementations for solving the SAT
problem, with extensive computational results. In their paper they demonstrate
how different GRASP implementations can be achieved by changing the greedy
adaptive function of the construction phase, and the local search that GRASP per-
forms. Their computational experiments where conducted on most of the problems
from the second DIMACS Challenge benchmark problems for SAT (Johnson and
Trick, 1996), and comparisons were made with GSAT (Selman et al., 1992).
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6.1.2. Inferring logical clauses from examples. The problem of inferring logical
clauses from examples is also related to the satisfiability problem. An example
with complete data is a vector e ∈ {0, 1}n, while an example with incomplete data
is a vector e ∈ {0, 1, ∗}n. An example can be thought of as an assignment of truth
values to n boolean variables. The ∗ symbol indicates that there is no assignment
(it can take the values of either true or false). Given sets of examples E+ and E−,
the problem is to find a formula (with preferably small number of clauses) such that
it will take the value of true for all examples in E+, and the value of false for
all examples in E−. Deshpande and Triantaphyllou (1998) presented two GRASPs
for solving the above problem, one for solving the problem with complete data,
and the other with incomplete data. Computational experiments where conducted
on problems involving 18,000 examples. Previous best results involved only up to
1,000 examples.

6.1.3. Maximum satisfiability. The weighted maximum satisfiability problem (MAX-
SAT) is a generalization of the satisfiability problem. In the MAX-SAT, for each
clause Ci we are given a weight wi, and the problem is to find an assignment of
truth values to the boolean variables x1, . . . , xn such that the sum of the weights of
the satisfied clauses is maximized. Resende, Pitsoulis and Pardalos (Resende et al.,
2000; Pardalos et al., 1996; Resende et al., 1997) presented a series of papers where
GRASP is implemented for solving the MAX-SAT problem.

In Resende et al. (1997) the following mixed integer programming formulation
of the MAX-SAT is used for the GRASP implementation. Let yj = 1 if Boolean
variable xj is true and yj = 0 otherwise. Furthermore, the continuous variable
zi = 1 if clause Ci is satisfied and zi = 0 otherwise. Consider the mixed integer
linear program

max F (y, z) =
m∑

i=1

wizi

subject to

∑

j∈I+
i

yj +
∑

j∈I−i

(1− yj) ≥ zi, i = 1, . . . ,m,

yj ∈ {0, 1}, j = 1, . . . , n,

0 ≤ zi ≤ 1, i = 1, . . . ,m,

where I+
i (resp. I−i ) denotes the set of variables appearing unnegated (resp.

negated) in clause Ci. Resende et al. (1997) described in detail the GRASP imple-
mentation for the MAX-SAT and conducted extensive computational experiments
from modified SAT instances taken from the second DIMACS implementation chal-
lenge (Johnson and Trick, 1996), where the optimal solution was also computed
using the CPLEX solver for comparison. The design and implementation of the
actual fortran subroutines is described in Resende et al. (2000). Moreover a paral-
lel implementation of GRASP for solving the MAX-SAT is given in Pardalos et al.
(1996), where the computational results indicate average linear speedup.
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6.2. Assignment and location problems. GRASP has been successfully ap-
plied to many combinatorial optimization problems arising in the context of as-
signment and location problems. Among others we mention intermodal trailer
assignment (Feo and González-Velarde, 1995), the generalized assignment problem
(Lourenço and Serra, 1998), satellite traffic assignment (Prais and Ribeiro, 2000),
aerial photographic map mosaicing (Fernández and Mart́ı, 1999), and location of
concentrators (Resende and Ulular, 1997). In the following, examples of GRASP
implementations for assignment and locations problems that have appeared in the
literature are given.

6.2.1. Quadratic assignment problem. The quadratic assignment problem (QAP)
was introduced by Koopmans and Beckmann (1957) as a mathematical model for
the location of a set of indivisible economical activities. Consider the problem of
allocating a set of facilities to a set of locations, with the cost being a function of the
distance and flow between the facilities, plus costs associated with a facility being
placed at a certain location. The objective is to assign each facility to a location
such that the total cost is minimized. Specifically, we are given three n× n input
matrices with real elements F = (fij), D = (dkl) and B = (bik), where fij is the
flow between the facility i and facility j, dkl is the distance between location k and
location l, and bik is the cost of placing facility i at location k. The Koopmans-
Beckmann version of the QAP can be formulated as follows. Let n be the number
of facilities and locations and denote by N the set N = {1, 2, . . . , n}, then the QAP
is formulated as

min
p∈ΠN

n∑

i=1

n∑

j=1

fijdp(i)p(j) +
n∑

i=1

bip(i),

where ΠN is the set of all permutations p : N → N . Each individual product
fijdp(i)p(j) is the cost of assigning facility i to location p(i) and facility j to location
p(j). In the context of facility location, matrices F and D are symmetric with zeros
in the diagonal, and all the elements of the matrices are nonnegative. The QAP is
one of the hardest optimization problems and, until now, no exact algorithm has
been able to solve problems of size n > 30 in reasonable computational time. In
fact, Sahni and Gonzalez (1976) have shown that the QAP is NP-hard and that
even finding an approximate solution within some constant factor from the optimal
solution cannot be done in polynomial time unless P = NP. There are numerous
applications of the QAP in different fields, for example, hospital layout (Elshafei,
1977), ranking of archaeological data (Krarup and Pruzan, 1978), ranking of a team
in a relay race (Heffley, 1977), scheduling parallel production lines (Geoffrion and
Graves, 1976), and analyzing chemical reactions for organic compounds (Ugi et al.,
1979).

Li et al. (1994) presented a GRASP for the QAP and reported computational
results on problems from the QAP test problem set QAPLIB (Burkard et al., 1997).
The authors describe the construction stage and present different local search strate-
gies based on different neighborhood structures for the QAP. Computational re-
sults showed that GRASP finds the best known solution for almost all instances in
QAPLIB, and in some cases it produces a better solution than previously reported.
Resende et al. (1996) presented in detail the design, implementation, and usage
of the code from (Li et al., 1994), and performed extensive computational results
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where they demonstrate the effect of running time in the solution quality of GRASP
for solving the QAP.

Define the sparsity of a matrix to be the ratio of the number of zero entries to the
number of all the entries in the matrix. Given a QAP instance with input matrices
F and D, define the sparsity of the instance to be the maximum sparsity of F and
D. Pardalos et al. (1997) modified the GRASP for QAP presented in Li et al. (1994)
to exploit sparsity. In Pardalos et al. (1997) the Fortran subroutines are described,
and computational results are presented where the dense and sparse versions of
GRASP for the QAP are compared in terms of solution time. The results show
that, on average, the sparse version is 32% faster than the dense version without
affecting the solution quality, while when sparsity is large (≥ 0.8), the sparse version
can be up to 300% faster. They take advantage of the inherent parallel nature of
the GRASP for the QAP, to implement a parallel version of the heuristic. Pardalos
et al. (1997) presented computational results on a parallel GRASP implementation
for solving large scale QAP instances, using a Kendall Square Research KSR-1
parallel computer, using up to 64 processors in parallel. The results indicate an
average speedup that is almost linear with respect to the number of processors.

GRASP can be thought of as a constructive multistart procedure, that is, a
procedure which performs local search each time using a different initial solution
obtained from a construction procedure. An immediate observation is that GRASP
is memoryless, or it does not use information that could be obtained from pre-
viously computed solutions for the construction of new solutions. Fleurent and
Glover (1999) suggest modifications in which information from previous solutions
can be incorporated into GRASP for solving the QAP, and numerical results in-
dicate consistent improvement in the solution quality for all the QAP instances
tested. Numerical results in Fleurent and Glover (1999) indicate that memory
based modifications improve the solution quality of GRASP for solving the QAP.

Another modification of GRASP for the QAP (Li et al., 1994) can be found in
Rangel et al. (1998), where a different local search scheme has been incorporated
which results in a smaller number of iterations.

6.2.2. The biquadratic assignment problem. A generalization of the QAP is the bi-
quadratic assignment problem (BiQAP), which is essentially a quartic assignment
problem with cost coefficients formed by the products of two four-dimensional ar-
rays. More specifically, consider two n4 × n4 arrays F = (fijkl) and D = (dmpst).
The BiQAP can then be stated as:

min
p∈ΠN

n∑

i=1

n∑

j=1

n∑

k=1

n∑

l=1

fijkldp(i)p(j)p(k)p(l),

where ΠN denotes the set of all permutations of N = {1, 2, . . . , n} as usual. The
major application of the BiQAP arises in VLSI circuit design. The majority of
VLSI circuits are sequential. Their design process is composed of first translating
the circuit specifications into a state transition table, modeling the system using
finite state machines, and finally trying to find an encoding of the states such
that the actual implementation is of minimum size. A detailed description of the
mathematical modeling of the VLSI problem to a BiQAP can be found in Burkard
et al. (1994). Several heuristics have been developed for the BiQAP by Burkard
and Çela (1995). In particular, deterministic improvement methods and variants of
simulated annealing and tabu search are proposed. Computational experiments on



12 LEONIDAS S. PITSOULIS AND MAURICIO G. C. RESENDE

test problems of size up to n = 32, with known optimal solutions (a test problem
generator is presented in Burkard et al. (1994)), suggested that one version of
simulated annealing is best among those tested. GRASP has also been applied to
the BiQAP by Mavridou et al. (1998), and produced optimal solutions for all the
test problems generated in Burkard et al. (1994).

6.2.3. Multidimensional assignment problems. In the multidimensional assignment
problem (MAP), the input data consists of one cost array C ∈ � n1×n2×···×nM ,
where, without loss of generality, we assume that n1 ≤ n2 ≤ · · · ≤ nM . An integer
programming formulation of the M -dimensional assignment problem is

min

n1∑

i1=1

· · ·
nM∑

iM=1

Ci1···iMxi1 ···iM(1)

s.t.

n2∑

i2=1

· · ·
nN∑

iM=1

xi1 ···iM = 1, i1 = 1, . . . , n1,(2)

n1∑

i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑

ik+1=1

· · ·
nM∑

iM=1

xi1 ···iM = 1,(3)

for ik = 1, . . . , nk and k = 2, . . . ,M − 1(4)
n1∑

i1=1

· · ·
nM−1∑

iM−1=1

xi1 ···iM = 1, iM = 1, . . . , nM ,(5)

xi1 ···iM ∈ {0, 1} for all i1 · · · iM .(6)

Multidimensional assignment problems, in their general form, have found many
applications as a means of modeling data association problems. More specifically,
the central problem in any multitarget tracking task and multisensor surveillance
is the data association problem of partitioning the observations into tracks and
false alarms. General classes of these problems can be formulated as multidimen-
sional assignment problems. For a detailed description on the application of MAPs
for multiple target tracking applications see Murphey et al. (1998a). Various ap-
plications are also contributed to special cases of the MAP, where the dimension
of the problem M is constant. Specifically, the five-dimensional assignment prob-
lem has been successfully used for tracking elementary particles. By solving a
five-dimensional assignment problem, physicists reconstruct tracks generated by
charged elementary particles produced by the large electron-positron colider (LEP)
at CERN (Pusztaszeri et al., 1995). Another well known special case is the three-
index assignment problem, where M = 3 (see Aiex et al. (2000a) for a GRASP for
the three-index assignment problem).

Murphey et al. (1998a) and Murphey et al. (1998b) present a GRASP for solving
the MAP for arbitrary M . In Murphey et al. (1998a), the authors focused on
the mathematical modeling of the multi-target multi-sensor problem into an M -
dimensional assignment problem, and present a preliminary GRASP for solving
the resulting MAP, coded in MATLAB. In their following paper (Murphey et al.,
1998b) they present a parallel GRASP implementation for solving the MAP, where
specialized data structures used for the construction and local search phases are
described in detail. In (Murphey et al., 1998b), the MAP is shown to be equivalent
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to

min
n1∑

i=1

Cip2(i)···pM−1(i)pM (i)

s.t. pi ∈ ΠNi , i = 2, . . . ,M,

where ΠNi is the set of all permutations of the sets of integers Ni = {1, 2, . . . , ni}
for i = 2, . . . ,M . Experimental results in Murphey et al. (1998b) for a set of
realistic test problems, indicate that GRASP produced in real-time either optimal
solutions or solutions very close to the optimal partitions of observations to targets,
for problems with closely spaced targets.

Robertson (2001) presents four GRASP implementations for solving the MAP,
also in the context of the multi-target multi-sensor problem. Computational results
are reported for two randomly generated problem sets, and a third problem set
which resulted from track initiation scenarios generated from a tracking simulation
engine.

6.2.4. Plant Location. In the capacitated plant location problem (CPLP), we have a
set of alternative plants and a set of clients to be assigned to the plants. Each plant
has a given capacity and a certain fixed opening cost, and each client has a given
demand and a cost associated with the assignment to a plant. The objective is to
find which plants to open and the assignment of clients to those opened plants at a
minimum cost, such that the demands of the clients are satisfied and the capacities
of the plants are not exceeded. In the case where we are constrained to assign each
client to only one plant, the problem becomes the pure integer capacitated plant
location problem (PI-CPLP). The PI-CPLP is also referred to as the single source
CPLP in the literature. The PI-CPLP can be formulated as

min
∑

i∈I

∑

j∈J
cijxij +

∑

j∈J
fjyj

s.t.
∑

j∈J
xij = 1, ∀i ∈ I,

∑

i∈I
dixij ≤ bjyj ∀j ∈ J,

xij , yj ∈ {0, 1} ∀i ∈ I, j ∈ J,

where sets I and J are the sets of clients and plants, respectively, fi is the fixed
opening cost for plant i, cij is the cost of assigning client i to plant j, di is the
demand of client i, and bj is the capacity of plant j. The decision variables are xij
and yj . xij is equal to 1 if client i is assigned to plant j, and 0 otherwise, and yj
is equal to 1 if plant j is open, and 0 otherwise.

Delmaire et al. (1999) develop four types of heuristics for solving the PI-CPLP,
based on four different heuristic approaches: evolution algorithms (EA), GRASP,
simulated annealing (SA), and tabu search (TS). In an experimental study, they
compare the performance of the algorithms for solving the PI-CPLP and conclude
that a hybrid approach where the speed of GRASP and the solution quality of TS
are combined would be very effective. It is noted that, in (Delmaire et al., 1999),
the maximum number of iterations that GRASP was allowed to run was 50, which
resulted in running times which were, on average, an order of magnitude smaller
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than the other heuristic procedures, while overall GRASP was second in terms of
solution quality.

As a sequel to (Delmaire et al., 1999), Dı́az and Fernández (1998) present a hybrid
reactive GRASP and tabu search for solving the PI-CPLP. Dı́az and Fernández
(1998) perform computational runs on the same set of problems as in (Delmaire
et al., 1999), where the hybrid GRASP-tabu search performs well. Specifically,
the average deviation of the new approach, from the best known solutions never
exceeded 0.3%.

Another important problem in the context of plant location, is the one which
involves economies of scale. Let I and J be the sets of clients and plants respectively,
as defined previously in this subsection. Each client i has a demand bi, and the
cost of shipping one unit of product from plant i to client j is cij . The location
problem with economies of scale is formulated as

min
∑

i∈I

∑

j∈J
cijxij +

∑

j∈J
gj(yj)

s.t.
∑

i∈I
xij = yj , ∀j ∈ J,

∑

j∈J
xij = bi, ∀i ∈ I,

yj ≥ 0, ∀j ∈ J,
xij ≥ 0, ∀i ∈ I, j ∈ J,

where xij is the amount of products shipped from plant j to client i, and yj is the
total amount of products shipped from plant j. The function g(·) is a cost function
that can have several forms depending on the application. For example, in the
CPLP g is constant and represents a fixed opening cost. Holmqvist et al. (1998)
present a GRASP for solving the above problem where the function g has the form
of warehousing costs, i.e.

gj(yj) =

{
0 if yj = 0,
a1j + a2jyj + a3j

√
yj if yj > 0,

where a1j , a2j and a3j are nonnegative parameters. They exploit properties of the
given problem in the GRASP implementation, and perform computational experi-
ments for a set of problems from the OR-library (Beasley, 1990). Compared to the
solutions obtained with Lagrangean relaxation, GRASP found a better solution for
all but two (out of fifteen) problem instances.

6.2.5. Frequency assignment problem. The frequency assignment problem (FAP)
arises in the context of resource management in cellular networks, and refers to
the problem of assigning a limited number of frequencies to transmitters in the
network, such that the electromagnetic interference is minimized. Consider that
we have N transmitters in the network, and let the N ×N matrix C represent the
minimal frequency separation values for each pair of transmitters. Then, given two
transmitters i and j and assigned frequencies fi and fj respectively, the following
constraint should be satisfied

|fi − fj | > cij .
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Given the minimal frequency separation matrix C in the FAP we have the following
objective function

min
N∑

i=1

N∑

j=1

δ(|fi − fj | > cij),

where

δ(|fi − fj | > cij) =

{
cij − |fi − fj |, if |fi − fj | ≤ cij ,
0, otherwise.

Liu et al. (2000) present a GRASP for solving the FAP in mobile radio networks.
The construction phase is a randomized version of a sequential coloring heuristic
based on saturation degrees, and the local search phase is a fast simulated anneal-
ing procedure. Computational experiments were performed on two data sets, one
randomly generated and one with instances from the European EUCLID project
CALMA (Combinatorial Algorithms for Military Applications). In the first data
set, GRASP compares favorably with the pure saturation with the simulated an-
nealing heuristic, while in the second set, GRASP improves the best known solutions
for all instances.

6.2.6. The p-hub location problem. In the p-hub location problem we are given a
set of nodes where there is a certain level of traffic between each pair of nodes
(“traffic” can be data, products, etc.), and a cost per unit transfered between any
pair of nodes. The objective is to determine p nodes which will serve as hubs, that
is a set of nodes which is fully interconnected, and every other node is connected to
at least one hub, such that the total cost is minimized. Given such a configuration,
any two nodes in the network can communicate through the hubs (in the worst case
two hubs will be used as intermediate nodes). Specifically, consider that we have
n nodes, and wij is the number of units transfered from node i to node j, and cij
is the cost per unit transfered between i and j. Let yj be equal to 1 if node j is a
hub and 0 otherwise, and xij be equal to 1 if node i is connected to hub j and 0
otherwise. The p-hub location problem can then be stated as

min
∑

i,j

wij


∑

k

xikcik +
∑

m

xjmcjm + a
∑

k,m

xikximckm




s.t.
∑

j

xij = 1, i = 1, . . . , n,

∑

j

yj = p,

xij ≤ yj , i, j = 1, . . . , n,

xij , yj ∈ {0, 1}, i, j = 1, . . . , n,

where a is a discount parameter. Klincewicz (1992) presents a GRASP and a tabu
search for solving the p-hub location problem. The author considers two classes of
test problems. The first consists of instances with up to 25 nodes where p = 3, 4
and the optimal solutions, under the assumption that nodes are to be assigned to
the nearest hub, are known. The second problem class consists of instances with 52
nodes, where p = 4, 10. For the first class of problems, GRASP found the optimal
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solution in over 90% of the instances, while for the second problem class it generated
best-known solutions.

7. Concluding remarks

GRASP has found its way into many applications in academic as well as in-
dustrial settings. Besides producing good quality solutions to hard combinatorial
optimization problems, it has several advantages over other metaheuristics. It can
usually be implemented quickly, since construction and local search algorithms are
readily available. Parameter tuning is minimal. Finally, because of the probability
distribution of its running time to find a suboptimal target solution, GRASP can
be implemented in parallel with optimal speed-up.

Many problems can be approached with GRASP. However, since GRASP is
a constructive method, it is difficult to apply it to problems for which feasible
solutions are difficult to construct.
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