
Scatter Search

Manuel Laguna

Graduate School of Business and Administration
Campus Box 419, University of Colorado, Boulder, CO 80309-0419, USA.
Manuel.Laguna@Colorado.edu

Latest Revision: August 16, 1999

Abstract — This article explores the meta-heuristic approach called scatter search, which is an
evolutionary method that has recently been shown to yield promising outcomes for solving
combinatorial and nonlinear optimization problems. Based on formulations originally proposed
in the 1960s for combining decision rules and problem constraints, this method uses strategies
for combining solution vectors that have proved effective in a variety of problem areas. Scatter
search can be implemented in multiple ways, and offers numerous alternatives for exploiting
its fundamental ideas. We identify a general design and illustrate the main features in the
context of a classical integer programming problem.

2 Laguna

1. Scatter Search Background

Scatter search, from the standpoint of meta-heuristic classification, may be viewed as an
evolutionary (or also called population-based) algorithm that constructs solutions by combining
others. It derives its foundations from strategies originally proposed for combining decision
rules and constraints (in the context of integer programming). The goal of this methodology is
to enable the implementation of solution procedures that can derive new solutions from
combined elements. The way scatter search combines solutions and updates the set of
reference solutions used for combination sets this methodology apart from other population-
based approaches.

As discussed in Glover (1998 and 1999), the approach of combining existing solutions or rules
to create new solutions originated in the 1960s. In the area of scheduling, researchers
introduced the notion of combining rules to obtain improved local decisions. Numerically
weighted combinations of existing rules, suitably restructured so that their evaluations
embodied a common metric, generated new rules. The conjecture that information about the
relative desirability of alternative choices is captured in different forms by different rules
motivated this approach. The combination strategy was devised with the belief that this
information could be exploited more effectively when integrated than when treated in isolation
(i.e., when existing selection rules are selected one at a time). In general, the decision rules
created from such combination strategies produced better empirical outcomes than standard
applications of local decision rules. They also proved superior to a “probabilistic learning
approach” that used stochastic selection of rules at different junctures, but without the
integration effect provided by generating combined rules.

In integer and nonlinear programming, associated procedures for combining constraints were
developed, which likewise employed a mechanism for creating weighted combinations. In this
case, nonnegative weights were introduced to create new constraint inequalities, called
surrogate constraints. The approach isolated subsets of constraints that were gauged to be
most critical, relative to trial solutions based on the surrogate constraints. This critical subset
was used to produce new weights that reflected the degree to which the component constraints
were satisfied or violated.

The main function of surrogate constraints was to provide ways to evaluate choices that could
be used to create and modify trial solutions. A variety of heuristic processes that employed
surrogate constraints and their evaluations evolved from this foundation. As a natural
extension, these processes led to the related strategy of combining solutions. Combining
solutions, as manifested in scatter search, can be interpreted as the primal counterpart to the
dual strategy of combining constraints.

Scatter search operates on a set of solutions, the reference set, by combining these solutions to
create new ones. When the main mechanism for combining solutions is such that a new
solution is created from the linear combination of two other solutions, the reference set may
evolve as illustrated in Figure 1. This figure assumes that the original reference set of
solutions consists of the circles labeled A, B and C. After a non-convex combination of
reference solutions A and B, solution 1 is created. More precisely, a number of solutions in the
line segment defined by A and B are created; however, only solution 1 is introduced in the
reference set. (The criteria used to select solutions for membership in the reference set are
discussed later.) In a similar way, convex and non-convex combinations of original and newly

Scatter Search 3

created reference solutions create points 2, 3 and 4. The complete reference set shown in
Figure 1 consists of 7 solutions (or elements).

Unlike a “population” in genetic algorithms, the reference set of solutions in scatter search
tends to be small. In genetic algorithms, two solutions are randomly chosen from the
population and a “crossover” or combination mechanism is applied to generate one or more
offspring. A typical population size in a genetic algorithm consists of 100 elements, which are
randomly sampled to create combinations. In contrast, scatter search chooses two or more
elements of the reference set in a systematic way with the purpose of creating new solutions.
Since the combination process considers at least all pairs of solutions in the reference set,
there is a practical need for keeping the cardinality of the set small. Typically, the reference set
in scatter search has 20 solutions or less. In general, if the reference set consists of b
solutions, the procedure examines approximately (3b-7)b/2 combinations of four different
types (Glover 1998). The basic type consists of combining two solutions; the next type
combines three solutions, and so on and so forth. Limiting the scope of the search to a
selective group of combination types can be used as a mechanism for controlling the number of
possible combinations in a given reference set.

2. Scatter Search Template

The scatter search process, building on the principles that underlie the surrogate constraint
design, is organized to (1) capture information not contained separately in the original vectors,
(2) take advantage of auxiliary heuristic solution methods to evaluate the combinations
produced and to generate new vectors (Glover, 1998). Specifically, the scatter search approach
may be sketched as follows:

1. Generate a starting set of solution vectors to guarantee a critical level of diversity
and apply heuristic processes designed for the problem considered as an attempt for

Figure 1. Two-dimensional reference set.

1

3

2

4

A

B

C

4 Laguna

improving these solutions. Designate a subset of the best vectors to be reference
solutions. (Subsequent iterations of this step, transferring from Step 4 below,
incorporate advanced starting solutions and best solutions from previous history as
candidates for the reference solutions.) The notion of “best” in this step is not
limited to a measure given exclusively by the evaluation of the objective function. In
particular, a solution may be added to the reference set if the diversity of the set
improves even when the objective value of such solution is inferior to other solutions
competing for admission in the reference set.

2. Create new solutions consisting of structured combinations of subsets of the
current reference solutions. The structured combinations are:

a) chosen to produce points both inside and outside the convex regions spanned by
the reference solutions.

b) modified to yield acceptable solutions. (For example, if a solution is obtained by
a linear combination of two or more solutions, a generalized rounding process
that yields integer values for integer-constrained vector components may be
applied. Note that an acceptable solution may or may not be feasible with
respect to other constraints in the problem.)

3. Apply the heuristic processes used in Step 1 to improve the solutions created in
Step 2. (Note that these heuristic processes must be able to operate on infeasible
solutions and may or may not yield feasible solutions.)

4. Extract a collection of the “best” improved solutions from Step 3 and add them to
the reference set. The notion of “best” is once again broad; making the objective
value one among several criteria for evaluating the merit of newly created points.
Repeat Steps 2, 3 and 4 until the reference set does not change. Diversify the
reference set, by re-starting from Step 1. Stop when reaching a specified iteration
limit.

The first notable feature in scatter search is that its structured combinations are designed with
the goal of creating weighted centers of selected subregions. This adds non-convex
combinations that project new centers into regions that are external to the original reference
solutions (see, e.g., solution 3 in Figure 1). The dispersion patterns created by such centers
and their external projections have been found useful in several application areas.

Another important feature relates to the strategies for selecting particular subsets of solutions
to combine in Step 2. These strategies are typically designed to make use of a type of
clustering to allow new solutions to be constructed “within clusters” and “across clusters”.
Finally, the method is organized to use ancillary improving mechanisms that are able to
operate on infeasible solutions, removing the restriction that solutions must be feasible in
order to be included in the reference set.

The following principles summarize the foundations of the scatter search methodology (Glover
1998):

• Useful information about the form (or location) of optimal solutions is typically
contained in a suitably diverse collection of elite solutions.

• When solutions are combined as a strategy for exploiting such information, it is
important to provide mechanisms capable of constructing combinations that
extrapolate beyond the regions spanned by the solutions considered. Similarly, it is

Scatter Search 5

also important to incorporate heuristic processes to map combined solutions into
new solutions. The purpose of these combination mechanisms is to incorporate
both diversity and quality.

• Taking account of multiple solutions simultaneously, as a foundation for creating
combinations, enhances the opportunity to exploit information contained in the
union of elite solutions.

The fact that the mechanisms within scatter search are not restricted to a single uniform
design allows the exploration of strategic possibilities that may prove effective in a particular
implementation. These observations and principles lead to the following template for
implementing scatter search.

1) A Diversification Generation Method to generate a collection of diverse trial solutions,
using an arbitrary trial solution (or seed solution) as an input.

2) An Improvement Method to transform a trial solution into one or more enhanced trial
solutions. (Neither the input nor the output solutions are required to be feasible,
though the output solutions will more usually be expected to be so. If no
improvement of the input trial solution results, the “enhanced” solution is
considered to be the same as the input solution.)

3) A Reference Set Update Method to build and maintain a reference set consisting of
the b “best” solutions found (where the value of b is typically small, e.g., no more
than 20), organized to provide efficient accessing by other parts of the method.
Solutions gain membership to the reference set according to their quality or their
diversity.

4) A Subset Generation Method to operate on the reference set, to produce a subset of
its solutions as a basis for creating combined solutions.

5) A Solution Combination Method to transform a given subset of solutions produced by
the Subset Generation Method into one or more combined solution vectors.

In the next section, we employ this template to illustrate the design of a simple scatter search
procedure for an instance of the well-known 0-1 knapsack problem.

3. A Scatter Search Illustration

Consider the following 0-1 knapsack problem, where the coefficients in the objective function
are considered profit values and the coefficients in the constraint are considered weights:

Maximize 11x1 + 10x2 + 9x3 + 12x4 + 10x5 + 6x6 + 7x7 + 5x8 + 3x9 + 8x10

Subject to 33x1 + 27x2 + 16x3 + 14x4 + 29x5 + 30x6 + 31x7 + 33x8 + 14x9 + 18x10 < 100
xi = {0, 1} for i = 1, …, 10.

For the purpose of this illustration, we first describe each of the methods that are needed in
the overall procedure. We then discuss the iterative nature of the resulting solution method.

6 Laguna

Diversification Generation Method

An appropriate diversification generator for this problem is described in Glover (1998). This
generator operates as follows. Choose a value for the parameter h < n-1, where n is the
number of variables in the problem. Let us choose h = 5. We also choose the initial seed to be
x = (0,0,0, ,0). For each value of h, two solutions are generated. Type 1 solutions are denoted
by x ′ and are initialized as 0=′ix for all i. Then some of the individual elements are modified
as follows:

11 1 xx −=′

hkhk xx ++ −=′ 11 1 for k = 1, …, n/h.

Type 2 solutions are denoted by x ′′ and obtained as the complement of Type 1 solutions, i.e.,

ii xx ′−=′′ 1 . Table 1 shows the 10 solutions generated with this method using the parameters
given above.

Table 1. Diversified solutions.

h x ′ x ′′
1 (1,1,1,1,1,1,1,1,1,1) (0,0,0,0,0,0,0,0,0,0)
2 (1,0,1,0,1,0,1,0,1,0) (0,1,0,1,0,1,0,1,0,1)
3 (1,0,0,1,0,0,1,0,0,1) (0,1,1,0,1,1,0,1,1,0)
4 (1,0,0,0,1,0,0,0,1,0) (0,1,1,1,0,1,1,1,0,1)
5 (1,0,0,0,0,1,0,0,0,0) (0,1,1,1,1,0,1,1,1,1)

The 10 solutions in Table 1 can now be used to create the reference set by applying the
following Improvement Method.

Improvement Method

Since the solutions generated with the Diversification Generation Method are not guaranteed to
be feasible, the Improvement Method should be capable of handling starting solutions that are
either feasible or infeasible. To illustrate, we consider a simple procedure that operates as
follows:

a) If the trial solution is infeasible, then the method attempts to improve it by first
finding a feasible solution. A feasible solution is found by changing variable values
from one to zero until the constraint is no longer violated. The variables are
considered in increasing order of their profit-to-weight ratio, starting with the one
with the smallest ratio. Once the solution becomes feasible, the following procedure
is applied.

b) If the trial solution is feasible, then the method attempts to improve it by changing
variable values from zero to one. This is done in a greedy fashion, so that the first
variable to be considered is the one with the largest profit-to-weight ratio. (For
example, x4 has the largest ratio value of 12/14 = 0.857 in our problem instance.)
The procedure stops when no more variables can be given a value of one without
violating the constraint.

Scatter Search 7

Table 2 shows the solutions obtained by the application of the Improvement Method to the trial
solutions generated by the Diversification Generation Method.

Table 2. Initial and improved solutions.

Solution Trial Solution Objective
Value

Improved Solution Objective
Value

1 (1,1,1,1,1,1,1,1,1,1) 81† (0,1,1,1,0,0,0,0,1,1) 42
2 (1,0,1,0,1,0,1,0,1,0) 40† (1,0,1,1,1,0,0,0,0,0) 42
3 (1,0,0,1,0,0,1,0,0,1) 38 (1,0,0,1,0,0,1,0,0,1) 38
4 (1,0,0,0,1,0,0,0,1,0) 24 (1,0,0,1,1,0,0,0,1,0) 36
5 (1,0,0,0,0,1,0,0,0,0) 17 (1,0,1,1,0,1,0,0,0,0) 38
6 (0,0,0,0,0,0,0,0,0,0) 0 (0,1,1,1,0,0,0,0,0,1) 39
7 (0,1,0,1,0,1,0,1,0,1) 41† (0,1,0,1,0,1,0,0,0,1) 36
8 (0,1,1,0,1,1,0,1,1,0) 43† (0,1,1,1,1,0,0,0,1,0) 44*
9 (0,1,1,1,0,1,1,1,0,1) 57† (0,1,1,1,0,0,0,0,1,1) 42
10 (0,1,1,1,1,0,1,1,1,1) 64† (0,1,1,1,0,0,0,0,1,1) 42

† denotes an infeasible solution.

* denotes the optimal solution.

Note that the trial solutions 1, 9 and 10 in Table 2 became the same improved solution with an
objective value of 42. In these cases, which are not atypical, the Diversification Generation
Method can be applied until a desired number of different improved solutions are found. Also
note that the Improvement Method was able to find the optimal solution starting from the
infeasible trial solution 8. Table 3 shows the moves that the Improvement Method performed
to obtain the optimal solution starting from the corresponding infeasible trial solution.

Table 3. Iterations of the Improvement Method.

Iteration Current Solution Objective
value

Total
Weight

Candidate Moves
(profit/weight)

Selected
Move

1 (0,1,1,0,1,1,0,1,1,0) 43 149 x2 = 0 (0.370)
x3 = 0 (0.563)
x5 = 0 (0.345)
x6 = 0 (0.200)
x8 = 0 (0.152)
x9 = 0 (0.214)

x8 = 0

2 (0,1,1,0,1,1,0,0,1,0) 38 116 x2 = 0 (0.370)
x3 = 0 (0.563)
x5 = 0 (0.345)
x6 = 0 (0.200)
x9 = 0 (0.214)

x6 = 0

3 (0,1,1,0,1,0,0,0,1,0) 32 86 x4 = 1 (0.857) x4 = 1
4 (0,1,1,1,1,0,0,0,1,0) 44 100 None

The iterations in Table 3 show that while the knapsack constraint is violated (i.e., the total
weight of the current solution is larger than 100), the candidate moves consist of changing
variable values from one to zero. In the first iteration, x8 is selected because its profit-to-weight
ratio is the minimum in the candidate list. After x6 is also set to zero in iteration 2 using the
same criteria as before, the current solution becomes feasible in iteration 3. The procedure

8 Laguna

now looks for opportunities to improve the objective function value. The candidates are those
variables that are currently set to zero (excluding x6 and x8) and whose weight is less than or
equal to the current slack (i.e., 100-86 = 14). The only variable that meets such criteria is x4,
which also happens to have the largest profit-to-weight ratio of 0.857. When the value of x4 is
changed to 1, the optimal solution is found. No more moves are available in iteration 4 and the
improvement process stops.

Reference Set Update Method

This method is used to create and maintain a set of reference solutions. We divide this set of b
solutions into two subsets: the subset of b1 high-quality solutions and the subset of b2 diverse
solutions. Let us consider a reference set of size b = 5, where b1 = 3 and b2 = 2. According to
these definitions, the subset of high-quality solutions would consist of the improved solutions
1, 2 and 8.

In order to find a diverse set to complement the subset of high-quality solutions, it is necessary
to define a diversity measure. We define the distance between two solutions as the sum of the
absolute difference between its corresponding variable values. For example, the distance
between the improved solution 1 and the improved solution 8 is calculated as follows:

(0,1,1,1,0,0,0,0,1,1)
(0,1,1,1,1,0,0,0,1,0)

(0+0+0+0+1+0+0+0+0+1)= 2

We then use this distance measure to select the two solutions for the subset of diverse
solution. In particular, we look for the solution that is not currently in the reference set and
that maximizes the minimum distance to all the solutions currently in the reference set. Table
4 shows the distance values from each candidate solution to each solution currently in the
reference set.

Table 4. Distance measures.

Distance to solution Minimum
Candidate Solution 1 2 8 distance
3 (1,0,0,1,0,0,1,0,0,1) 5 4 7 4
4 (1,0,0,1,1,0,0,0,1,0) 5 2 3 2
5 (1,0,1,1,0,1,0,0,0,0) 5 2 5 2
6 (0,1,1,1,0,0,0,0,0,1) 1 4 3 1
7 (0,1,0,1,0,1,0,0,0,1) 3 6 5 3

The list of candidate solutions in Table 4 includes neither solution 9 nor solution 10 because
these solutions are the same as solution 1, which is already in the reference set. The distance
values show that in order to maximize the minimum distance, improved solution 3 should be
added to the reference set. The final member of the reference set becomes solution 7, because
solutions 4, 5, 6 and 7 have the same distance (equal to 4) to solution 3. So, solution 7
achieves the maximum minimum distance from the set of candidate solutions.

It is important to note that the reference set does not consist of all the “best” solutions as
measured by the objective function value only. Because we are interested in a balance between
high quality solutions and diverse solutions, improved solution 6 with an objective value of 39

Scatter Search 9

is by-passed in favor to other solutions that will add more diversity to the set. As indicated in
Table 4, the distance between solution 1 and solution 6 is only one unit, making this solution
unattractive from the standpoint of diversification.

Subset Generation Method

This method consists of generating the subsets that will be used for creating structured
combinations in the next step. The method is typically designed to generate the following types
of subsets:

1) All 2-element subsets.
2) 3-element subsets derived from the 2-element subsets by augmenting each 2-

element subset to include the best solution (as measured by the objective value) not
in this subset.

3) 4-element subsets derived from the 3-element subsets by augmenting each 3-
element subset to include the best solution (as measured by the objective value) not
in this subset.

4) The subsets consisting of the best i elements (as measured by the objective value),
for i = 5 to b.

Table 5 shows the subsets generated using our current reference set.

Table 5. Subset generation.

Type Subsets
1 (1,2) (1,3) (1,7) (1,8)

(2,3) (2,7) (2,8)
(3,7) (3,8)
(7,8)

2 (1,2,8) (1,3,8) (1,7,8)
(2,3,8) (2,7,8)
(3,7,8)

3 (1,2,3,8) (1,2,7,8)
(1,3,7,8)

4 (1,2,3,7,8)

As expected, there are 10 possible subsets of type 1 in Table 5. Type 2 subsets are formed by
augmenting the 2-element subsets. The first 2-element subset is formed by solutions 1 and 2,
and we add solution 8 to form the 3-element subset (1,2,8). This is done starting from each of
the 2-element subsets. After eliminating repetitions, there are 6 subsets of type 2. Subsets of
type 3 are formed in a similar way, starting this time from the 3-element subsets.

Solution Combination Method

This method uses the subsets generated in the previous step to combine the elements in each
subset with the purpose of creating new trial solutions. The Combination Method is typically
problem-specific since is directly related to the solution representation. Depending on the
specific form of the Solution Combination Method, each subset can create one or more new
solutions. For illustration purposes, we use a combination method that creates only one
solution from each subset. Specifically, our Solution Combination Method calculates a score
for each variable, based on the solutions in the subset and their corresponding objective

10 Laguna

values. The score for variable i that corresponds to the solutions in subset S is calculated with
the following formula:

∑
∑

∈

∈=

Sj

Sj

j
i

jOV

xjOV

iscore
)(

*)(

)(.

Where OV(j) is the objective value of solution j and j
ix is the value of the ith variable in solution

j. Then, the trial solution is constructed by rounding the score for each variable to the nearest
integer, i.e.,

≤
>

=′
0.5)(if0
0.5)(if1

iscore
iscore

x i .

Note that the combination mechanism constructs solutions that may be infeasible. This does
not represent a problem in general, since the Improvement Method is always applied to each
trial solution created after the application of the Solution Combination Method. Recall that the
Improvement Method must be designed to deal with either feasible or infeasible starting
solutions.

To illustrate the use of the Solution Combination Method, consider the subset type 2 given by
solutions 3, 7 and 8. The objective value of solution 3 is 38, the objective value of solution 7 is
36 and the objective value of solution 8 is 44, i.e., OV(3) = 38, OV(7) = 36, and OV(8) = 44. The
score for each variable can be calculated as shown in Table 6.

Table 6. Score calculation for subset combination (3,7,8).

Solution x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

3 0.322 0.000 0.000 0.322 0.000 0.000 0.322 0.000 0.000 0.322
7 0.000 0.305 0.000 0.305 0.000 0.305 0.000 0.000 0.000 0.305
8 0.000 0.373 0.373 0.373 0.373 0.000 0.000 0.000 0.373 0.000

Total 0.322 0.678 0.373 1.000 0.373 0.305 0.322 0.000 0.373 0.627

After rounding the scores in Table 6, the new solution becomes (0,1,0,1,0,0,0,0,0,1) with
an objective value of 30 and a total weight of 59. This feasible solution can be improved with
the Improvement Method. In this case, the value of x5 is changed from zero to one, because x5

has the highest profit-to-weight ratio of the variables that are currently set to zero. The
improved solution has an objective value of 40 and a total weight of 88. Since no more variable
values can be switched from zero to one without violating the constraint, the improvement
process stops.

The new solutions constructed in this step of the procedure are considered for membership in
the reference set. A solution may become a member if its objective value is better than the
objective value of any of the solutions in the high-quality subset. Alternatively, if a new
solution improves the diversity of the reference set, this solution can replace one that is
currently in the diverse set. If the reference set is modified, then the Subset Generation

Scatter Search 11

Method, the Solution Combination Method and the Improvement Method are applied in
sequence. The application of the methods continues until the reference set converges (i.e., no
elements in the set are replaced). At this point, the Diversification Method can be applied
again from a different seed and the search continues until termination criteria are satisfied.

4. A Summary of the Procedure

In the previous section, we illustrated the operations that take place within each of the
methods that shape a scatter search implementation. We now finish our introduction to
scatter search with an overall view of the procedure. This outline (or pseudo-code) uses the
following parameters:

PSize = the size of the set of diverse solutions generated by the Diversification
Generation Method

b = the size of the reference set.
b1 = the size of the high-quality subset.
b2 = the size of the diverse subset.
MaxIter = maximum number of iterations.

The procedure consists of the steps in the outline of Figure 2, where P denotes the set of
solutions generated with the Diversification Generation Method and RefSet is the set of solution
in the reference set.

The procedure starts with the generation of PSize distinct solutions. These solutions are
originally generated to be diverse and subsequently improved by the application of the
Improvement Method (step 1). The set P of PSize solutions is ordered in step 2, in order to
facilitate the task of creating the reference set in step 3. The reference set (RefSet) is
constructed with the first b1 solutions in P and b2 solutions that are diverse with respect to the
members in RefSet.

The search consists of three main loops: 1) a “for-loop” that controls the maximum number of
iterations, 2) a “while-loop” that monitors the presence of new elements in the reference set,
and 3) a “for-loop” that controls the examination of all the subsets with at least one new
element. In step 4, the number of subsets with at least one new element is counted and this
value is assigned to MaxSubset. Also, the Boolean variable NewElements is made FALSE before
the subsets are examined, since it is not known whether a new solution will enter the reference
set in the current examination of the subsets. The actual generation of the subsets occurs in
step 5. Note that only subsets with at least one new element are generated in this step. A
solution is generated in step 6 by applying the Combination Method. Step 7 attempts to
improve this solution with the application of the Improvement Method. If the improved
solution from step 7 is better (in terms of the objective function value) than the worst solution
in RefSet1, then the improved solution becomes a new element of RefSet. Note that RefSet1 is
the subset of the reference set that contains the best solutions as measured by the objective
function value. The solution is added in step 8 and the NewElements indicator is switched to
TRUE in step 9.

If a solution is not admitted to the RefSet due to its quality, the solution is tested for its
diversity merits. If a solution adds diversity to RefSet2, then the solution is added to the
reference set and the less diverse solution is deleted (as indicated in steps 10 and 11). Finally,
step 12 is performed if additional iterations are still available. This step provides a seed for set

12 Laguna

P by adding the solutions in RefSet1 before a new application of the Diversification Generation
Method.

Note that the general procedure outlined in Figure 2 can be modified in different ways. One
possibility is to eliminate the outer “for-loop” along with step 12. In this case, set P is
generated only one time and the process stops after no new elements are admitted in the
reference set. That is the search is abandoned when the “while-loop” that contains steps 4 to
11 becomes false. This variation is useful for problems in which the search has to be
performed within a relatively small computer time. Also, there are some settings in which a
large percentage of the best solutions are found during the first iteration (i.e., when Iter = 1). In
this case, bypassing additional iterations has a small effect on the average performance.

A second variation consists of eliminating steps 10 and 11 and the if-statement associated with
these steps. This variation considers that the reference set will be initially constructed with
both high-quality solutions and diverse solutions. However after step 3, membership to the
reference set is obtained only due to quality. Therefore, in addition to eliminating steps 10 and
11, step 8 and its associated if-statement are modified as follows:

If (*
sx is not in RefSet and the objective function value of *

sx is better than the objective
function value of the worst element in RefSet) then

8. Add *
sx to RefSet and delete the worst element currently in RefSet. (The worst

element is the solution with worst objective value.)

That is, all references to RefSet1 are substituted with references to RefSet. In other words, after
step 3, the elements of RefSet are always ordered according to the objective function value,
making element 1 the best and element b the worst.

Implementing both of these variations at the same time results in a very aggressive search
method that attempts to find high quality solutions fast. While this may be desirable in some
settings, there are also settings in which a more extensive search can be afforded, and
therefore making the full procedure outlined in Figure 2 more attractive.

Scatter Search 13

Figure 2. Scatter Search Outline.

1. Start with P = Ø. Use the Diversification Generation Method to construct a solution x.

Apply the Improvement Method to x to obtain the improved solution *x . If Px ∉* then,
add *x to P (i.e., *xPP ∪=), otherwise, discard *x . Repeat this step until |P| = PSize.

2. Order the solutions in P according to their objective function value (where the best overall
solution is first on the list).

For (Iter = 1 to MaxIter)
3. Build RefSet = RefSet1 ∪ RefSet2 from P, with |RefSet| = b, |RefSet1| = b1 and

|RefSet2| = b2. Take the first b1 solutions in P and add them to RefSet1. For each
solution x in P-RefSet and y in RefSet, calculate a measure of distance or dissimilarity
d(x,y). Select the solution x ′ that maximizes dmin(x), where { }),(min)(min yxdxd

RefSety∈
= .

Add x′ to RefSet2, until |RefSet2| = b2. Make NewElements = TRUE.
While (NewElements) do

4. Calculate the number of subsets (MaxSubset) that include at least one new element.
Make NewElements = FALSE.

For (SubsetCounter = 1, …, MaxSubset) do
5. Generate the next subset s from RefSet with the Subset Generation Method.

This method generates one of four types of subsets with number of elements
ranging from 2 to |RefSet|. Let subset s = { s1, …, sk }, for 2 ≤ k ≤ |RefSet|. (We
consider that the Subset Generation Method skips subsets for which the
elements considered have not changed from previous iterations.)

6. Apply the Solution Combination Method to s to obtain one or more new
solutions xs.

7. Apply the Improvement Method to xs, to obtain the improved solution *
sx .

If (*
sx is not in RefSet and the objective function value of *

sx is better than the
objective function value of the worst element in RefSet1) then

8. Add *
sx to RefSet1 and delete the worst element currently in RefSet1. (The

worst element is the solution with worst objective value.)
9. Make NewElements = TRUE.

Else
If (*

sx is not in RefSet2 and dmin(*
sx) is larger than dmin(x) for a solution x in

RefSet2) then

10. Add *
sx to RefSet2 and delete the worst element currently in RefSet2.

(The worst element is the solution x with the smallest dmin(x) value.)
11. Make NewElements = TRUE.

End if
End if

End for
End while
If (Iter < MaxIter) then

12. Build a new set P using the Diversification Generation Method. Initialize the
generation process with the solutions currently in RefSet1. That is, the first b1

solutions in the new P are the best b1 solutions in the current RefSet.
End if

End for

14 Laguna

Bibliography

Campos, V., M. Laguna and R. Martí (1999) “Scatter Search for the Linear Ordering Problem,” to appear
in New Methods in Optimisation, D. Corne, M. Dorigo and F. Glover (Eds.), McGraw-Hill.

Glover, F. (1977) “Heuristics for Integer Programming Using Surrogate Constraints,” Decision Sciences,
Vol. 8, No. 1, pp. 156-166.

Glover, F. (1994) “Tabu Search for Nonlinear and Parametric Optimization (with links to genetic
algorithms),” Discrete Applied Mathematics, Vol. 49, pp. 231-255.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial Evolution, Lecture Notes
in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald , M. Schoenauer and D. Snyers (Eds.),
Springer, pp. 13-54.

Glover, F. (1999) “Scatter Search and Path Relinking,” to appear in New Methods in Optimisation, D.
Corne, M. Dorigo and F. Glover (Eds.), McGraw-Hill.

